
Procedural Planetary Landscapes with Continuous Level of Detail
- Does the moon exist only when someone is looking at it? - Albert Einstein 1950

Thomas A. Grønneløv∗ Axel E. Jensen†

Figure 1: Planetary landscape with continuous level of detail, rendered real-time

Abstract

We will present a real-time method for procedurally generating
huge planetary landscapes with continuous level of detail. This ap-
proach enables us to produce interesting planets with a small or
non existing pre-generated dataset, which in turn could be used to
visualize an endless number of different planets.

Where previous work in landscape generation have generally been
purely procedural or purely design, we have devised a method
which allows for a seamless integration of design into the computer
generated world.

Another novelty is the decoupling of the mesh optimization from
the rendering. While a high frame-rate is a requirement for fast

∗e-mail:Tag@Greenleaf.Dk
†e-mail: Axel@Eystein.Dk

and smooth animation, the mesh optimization can run in the back-
ground at a slower pace. We have implemented a system with dif-
ferent update frequencies for rendering and mesh optimization, to
let us prioritize the different tasks, and to distribute the workload
on multiple processors.

A method to generate natural looking river systems in the proce-
dural generated terrain is explored and implemented. While we
found that actual real-time procedural river generation was very
difficult, one could combine a fast preprocessing step, with cor-
rect river flow calculations, which could later be placed inside the
terrain.

• Seamless blend of design and pure procedurally generated ter-
raincolor

• Decoupled mesh optimization and rendering to better utilize
multi core processors

• Correct river flow calculation in a procedural landscape.

Contents

1 Reading guide 1

2 Glossary / notation 1

3 Introduction 1

4 Previous work 2

5 Level of Detail 3
5.1 Introduction to Level of Detail 3
5.2 Different categories of LOD 3

5.2.1 Discrete LOD 3
5.2.2 Continuous LOD 3
5.2.3 Detail defined LOD 4
5.2.4 View Dependent LOD 4

5.3 Motivations for using LOD, visual quality vs inter-
activity . 4

5.4 An example . 4

6 ROAM 5
6.1 ROAM from 10 000 feet 5

6.1.1 Basic ROAM geometry 5
6.1.2 Altering the mesh 5

6.2 Prioritizing the triangles 7
6.3 Boundaries and ROAMing a sphere7
6.4 A ROAMing example 7

6.4.1 Prioritized queues 7
6.5 Memory usage 8
6.6 Rendering a ROAM 9

6.6.1 Triangle ordering and format 9
6.6.2 A winding way through the mesh 9

6.7 Decoupling rendering and optimization10
6.8 Variations of ROAM 11
6.9 Ordinary ROAM error metric 11

6.9.1 Alternative ROAM error metrics 11
6.9.2 The uncertainty of lower subdivision levels12

7 Bounding volumes 12
7.1 Optimal bounding volume12
7.2 Breaking the bounds, and expanding them13

8 Z-buffer accuracy 13
8.1 Squeezing the planes14
8.2 Optimal clipping plane placement15
8.3 Calculating the clipping points15

9 Procedural generation of geometry and terrain 16
9.1 Motivating use of procedural methods16
9.2 An example of procedural generation17
9.3 Advantages and disadvantages of procedural gener-

ation . 17
9.4 Future perspective17
9.5 Use of procedural generation in this paper17
9.6 Fractal generation17

9.6.1 Midpoint displacement18
9.6.2 Fault line 19
9.6.3 Multi fractals 20
9.6.4 Ridged fractals20
9.6.5 Perlin Noise 22
9.6.6 Coordinate system23
9.6.7 The noise conclusion23

9.7 Not so random randomness23
9.7.1 Randomness from hashing23

10 Are landscapes really fractal? 24

11 Design and procedural generation 24
11.1 The blending function25
11.2 Midpoint displacement and design blending26
11.3 2D area design26

11.3.1 Design space27
11.3.2 Sampling 27
11.3.3 Blending 27

11.4 Design and visibility 28
11.5 Blending in the vertex shader30
11.6 Distortion from projection 31
11.7 Interactive real-time design31

12 Landscape features 32
12.1 Dry land . 32
12.2 Oceans and lakes32
12.3 River systems .33

12.3.1 1D path following profile 33
12.3.2 Dropping water 33

12.4 Vegetation .33
12.5 Erosion . 34

13 Calculating the natural flow of a river 34
13.1 Moving point of interest 35
13.2 From 3D river to 2D design35
13.3 Lakes . 37
13.4 Erosion . 37
13.5 Dry inseas and filling the ocean37
13.6 Visualization of rivers and lakes38
13.7 The river conclusion38

14 Visualization 39
14.1 Lighting . 39

14.1.1 Enter the shade40
14.2 Terrain color . 42

14.2.1 Pixel shader to color the landscape45
14.2.2 Textures to color the landscape46

15 View frustum culling 47

16 Various error metrics 48
16.1 Error measures related to geometry49

16.1.1 Surface layers49
16.1.2 Silhouettes50
16.1.3 Visual perception50

17 Test and analysis 51
17.1 Frame coherence51
17.2 Multiple threads52
17.3 Fractal terrain generating algorithm52
17.4 Effect of different number of triangles52
17.5 Visible triangles 53

18 Conclusion 54

19 Future work 54

A Enlarged figures 60

3 INTRODUCTION 1

1 Reading guide

The reader should have a thorough understanding of 3D graphics
and the terms used in that area. A decent understanding of Col-
lege level mathematics should be sufficient. Some figures of spe-
cial interest has an arrow symbolwfollowing the caption to indi-
cate that the figure can be found in the appendix in a larger version.
This paper, pictures and videos (XVID) are, or will be, available at
http://WWW.Greenleaf.Dk/ProceduralPlanet

In the introduction, we motivate the use of procedural generation on
a large scale, but provide no specifics. This section can be skipped
by readers who are familiar with the subject.

In section 4 we mention previous work which are in some way re-
lated to this project. As this project has two major topics, level of
detail and procedural generation, this section is split into two cor-
responding subsections. For readers unfamiliar with either or both
topics, we suggest to skim this section, or skip it and return to it
later.

A general introduction to level of detail is given in section 5 fol-
lowed by section 6, which contains an in depth description of the
ROAM algorithm. The latter sections details are not essential for
the understanding the rest of the paper.

In section 9 we introduce the concept of procedural generation of
terrain, followed by a discussion on fractal terrain, section 10, and
in section 12 and section 13 we describe some elements which
needs to be taken into consideration when producing realistic look-
ing terrain.

The use of design and problems arising thereby are found in section
11.

Lastly this paper presents in section 17 results concerning level of
detail and procedural techniques.

2 Glossary / notation

We use few non standard notations, but a few may need explanation.

Decimal separator We use the SI decimal separators. The thou-
sand separator is a space while the decimal separator is a point. One
million and a half will therefore be 1 000 000.5.

Modulus Modulus is typed out as the word ”mod”. 10 mod 7 is
3.

ROAM While ROAM is the name of an algorithm, we also use it
as a word for a mesh optimized by the algorithm.

LOD Meaning level of detail for an object or more generally for
a scene. At times used for an algorithm altering an objects level of
detail.

3 Introduction

Visualizing and generating large terrain, even planets, has many
interesting uses.

One field would be in computer games. The emergence of games in
which many players interact in large virtual worlds would benefit
from the option of easily developing new worlds or planets. Re-
cently a type of games known as MMPORPG1 has become very
popular, and contain thousands of players and computer characters,
but the worlds are still limited in size - though huge. In other games
players are traveling between solar systems containing many plan-
ets. Giving these planets more detail than just a textured sphere, so
one can actually land on them and look around, would certainly add
to the game experience. In computer games highly realistic terrains
are often desirable but at other times unrestricted environments are
even more important.

Another use would be for simulators, such as like flight simulators
and combat simulators. Both would benefit from large terrains ren-
dered at interactive rates and with some level of realism. At times
simulations need to reflect a situation from real life and this could
be one motivation for having a system in which procedural gen-
erated terrain can be blended with designed or sampled terrain or
terrain elements.

When visualizing terrain or entire planets to present geological or
geographical informations, data is sampled at a specific level. Us-
ing a procedural method to ”fill in the gaps” where data is missing
as a complementary method to interpolation between samples, to
add extra detail, could improve the visualization at times.

If you want to visualize a planet the size of Earth with a resolution
of one square meter per sample, it will take more than 500 trillion
samples for the height values of the surface. That would amount to
1 855 Terra bytes if the samples are stored as 32 bit data.

It is therefore not possible, with the computers of today, to give a
high resolution representation of a landscape of that size, if you rely
on brute force.

Should you wish to have one or more planets with a varying ter-
rain, it would be absolutely impossible to manually design all the
landscapes with the required level of detail, and currently we do not
have detailed height samples from many other planets.

The solution, which exists, is to use level of detail algorithms and
procedurally generated landscapes. Both have shown useful for
both arbitrarily large worlds and for quite realistic looking scener-
ies. Examples from the gaming world would be the brand new
Spore from Firaxis [Arts 2006] and older games like Elite [Elite
1984]. Neither one generates realistic landscapes, but they do pro-
vide an almost endless game world.

Combining level of detail algorithms and procedural generated ter-
rain run-time is still a fairly new topic. It has interesting perspec-
tives as this combination eventually could be used to visualize large
number of planets at the same time, where certain features are pre-
designed and others are not. It overcomes the tedious work of hav-
ing to design all the detail. It would be adventurous to explore new
worlds visited for the first time. It makes it possible to maintain a
large number of planets, as minimal data is stored for each planet
and more detail for planets is generated when needed. The level
of detail algorithm ensures that only what is visible, and of current
interest, is defined in detail.

Level of detail algorithms optimizes the use of resource for render-
ing scenes. It increases the effectives of the rendering process and

1Massive Multi Player Online Role Playing Game

4 PREVIOUS WORK 2

thereby increases the visual quality of the images produced with
limited resource. It is accomplished by generating details for ob-
jects based on how much those details contribute to the viewing
experience.

Many examples of breathtaking procedural landscapes exists. For
example in [Musgrave 2006] or [Terragen 2006]. Procedural gener-
ated terrain can look very realistic or they can look like things never
seen before. As mentioned above, procedural landscapes lowers the
database size considerably. Taken to the extreme, an entire planet
can be based on a single number.

At times more explicit control over the generated terrain is needed.
whether it be the general appearance of the terrain or how a certain
part of the terrain precisely looks. For that, an interaction between
the methods which generates the terrain and a designer is needed.
In developing computer games designers use some sort of ”level
design” tool box. In simulators data samples from the Earth might
be presented.

This interaction between designed or sampled terrain and procedu-
rally generated terrain is a interesting topic. It is somewhat in con-
flict with the motivation for using procedural generation, to lower
database size, but on the other hand purely designed terrain has con-
siderably database size and would benefit from replacing parts of
the designed terrain with procedural methods, whenever possible.

The task In this paper we will discuss the theory behind the level
of detail and procedural generation of terrain.

Different methods to generate terrain procedurally are presented
and select among those methods. When the methods are imple-
mented as a computer program, the landscape should be generated
procedurally as needed for rendering and thus give a subjectively
realistic looking landscape with details where they are most appre-
ciated.

Should a designer have specific demands for a specific part of the
landscape, it should be possible for that designer to influence the
procedurally generated landscape to a degree so that the design can
be integrated seamlessly into the world.

4 Previous work

We deal with a mix of procedural generation and level of detail, so
we relate to previous work in both fields, though much of that work
is either entirely about level of detail or entirely about procedural
generation.

Procedural content generation Procedural techniques has
been used for some time now. At first they where used to produce
relative simple effects. For instance in calculating colors and sim-
ple textures. Procedural techniques were catching on and around
1980s they where explored in more detail and began to be more
widely used.

B. B. Mandelbrot is known for his work on fractal geometry and
how it relates to nature. His work, to mention a few, from 1977
[Mandelbrot 1977] and later in 1983 [Mandelbrot 1983] has been an
inspiration to many trying to create landscapes. But B. B. Mandel-
brot realized that fractal landscapes where lacking erosion. Later, in
1991 B. B. Mandelbrot and F. K. Musgrave published their article,
[Musgrave and Mandelbrot 1991], on synthetic landscapes and how
it almost becomes an artistic process to create these landscapes.

In 1985 K. Perlin introduced 3D textures [Perlin 1985]. 3D tex-
tures, also known as solid texturing, were used to create textures
like wood, marble and similar elements often seen in nature. 3D
textures were also used as animated 2D textures.

Some years later K. Perlin and E. Hoffert extended 3D textures in
what they call hypertextures. In their article, [Perlin and Hoffert
1989], they describe methods to model effect like fur, fire, erosion
and the flow of water.

Similar techniques are used to model the more general class of
gaseous form. Like fire, as mentioned above, but also smoke clouds
as described by W. T. Reeves [Reeves 1983].

Also in 1989 F. K. Musgrave et al. published an article, [Mus-
grave et al. 1989], in which they describe a new way to generate
fractal landscape which look like landscapes subject to erosion, a
feature which fractal landscape at that time was criticized for not
possessing. They also present a couple of erosion models to further
improve the effect of erosion on the procedurally generated terrain.

In 1994 [Ebert 2003] was first published and is a collection of pro-
cedural techniques used for texturing, modeling and animating. It
covers the theoretical background and also goes into depth on im-
plementing techniques. It seems that procedural techniques are
used in increasing broader spectrum.

One of the coauthors of the above, F. K. Musgrave, is also the orig-
inator of MojoWorld, [Musgrave 2006],which is capable of pro-
ducing impressive worlds. These worlds are generated off line and
view dependent level of detail is also prepared off line.

Other interesting uses of procedural methods is seen in [Greuter
et al. 2003], where large and complex cities are generated, even real
time. Furniture and other contents for the 3D world can be gener-
ated and placed procedural and placed according to 2D floor plans
[Wehowsky 2001]. Combining all these techniques could produce
interesting sceneries, both indoor and outside.

Another interesting development in procedural techniques is seen in
the use of graphics hardware. Having programmable graphics card
add a whole new perspective to how and where geometry should
be generated. Instead of transferring large and complex geometric
models to the graphic card, it is now possible to just have procedural
methods programmed into the graphic card and saving band limit2.

Level of detail As early as 1976 James Clarke [Clark 1976] de-
scribed the advantages of using level of detail (LOD). He described
how an object in a scene could appear with different levels of detail
depending on various parameters, such as the objects distance to
the viewer, orientation etc.

During the early 1980’s flight simulators where quick to appreciate
and adopt LOD. Choosing between models of building of differ-
ent LOD depending on the distance to the viewer made it possi-
ble to have more realistic scenes in flight simulators [Cosman and
Schumacker 1981], [Yan 1985]. At that time, automatic methods
for simplifying models where not present, so they where made by
hand.

Using different LOD in terrain was also found useful as described
in 1993 J. S. Falby et al. [J. S. Falby and Mackey 1993]. Realizing
that simplifying terrain down to a level at which the throughput
of the graphical pipeline would satisfy interactivity results in too
simple terrains. In their paper they describe a method where parts
of the terrain is represented at different LOD and paged according
to the viewer.

2This requires geometry shaders

5 LEVEL OF DETAIL 3

This type of discrete LOD representation has the problem of visual
popping when switching between representation of different LOD.
Also special care needs to be taken between adjoining blocks of
different LODs.

In 1995 P. Lindstrom et al. uses a similar technique in [LIndstrom
et al. 95], but decisions on which terrain representation to use is
based on more factors, like information about the viewers orienta-
tion to the terrain, the roughness of the terrain etc. They are also
looking at a solution to fix cracks between adjacent patches of dif-
ferent resolutions, albeit not the most pretty solution.

One year later P. Lindstrom et al. [Lindstrom et al. 1996] came up
with a different approach. Instead of using the above mentioned
technique of choosing between representations at given LOD, they
present a method where the appropriate LOD is computed and the
representation is generated real time. This method uses a combined
method of simplification of existing model and repolygonalization
step, further reducing polygon count.

In 1996 H. Hoppe describes in his article, [Hoppe 1996], what he
calls progressiv meshes. A method to store and transfer meshes.
Progressive meshes are able to gradually refine from a simpler
model to a more complex model. One motivation is streaming of
data. Its possible to render a simple model and as data arrives, pro-
gressively refine the model and render it.

In 1997 M. Duchaineau et al., [Duchaineau et al. 1997], described
a view dependent method where a mesh is optimized by splitting
and merging triangles. This method accommodates frame coher-
ence and it use of priority queues for split or merge is flexible. P.
Lindstrom et al. [Lindstrom et al. 1996] takes on a similar approach
in their view dependent LOD solution.

Same year H. Hoppe describes [Hoppe 1997] a view dependant
LOD method, but different from the above, his method is not re-
stricted to regular meshes, but works well triangulated irregular net-
works, TIN, which eventual could mean a saving in triangles.

As graphic hardwares throughput has rapidly increased over the last
decade, refinement of previous solutions [Levenberg 2002], [Lind-
strom and Pascucci 2002] and development of new are emerging
[Losasso and Hoppe 2004]. In F. Losasso and H. Hoppes article,
[Losasso and Hoppe 2004], they describe how the graphics hard-
ware is used to store and update a grid situated around the viewer
representing the terrain.

5 Level of Detail

In the following, Level of Detail will be described. Advantages and
disadvantages for different approaches will be described, motivat-
ing choices made later.

5.1 Introduction to Level of Detail

In computer graphics there is a need for showing complex models
highly detailed. As the models level of detail grows, it will affect
the rendering process negatively. Rendering detailed models real
time comes at the cost of a lower frame rate, so some means of
technique needs to be used.

Realizing that models can be represented with different levels of
detail, as shown in Figure 2, depending on their distance to the
viewer, with little or no effect to the visual quality of the scene,
could lower the scenes polygon count and therefore rendering the
scene would be faster.

Lowering the level of detail for models more distant (or in other
ways of lesser importance for the scene) makes sense because the
low detailed model would be represented by an area in the rendered
image which relates to its size and distance. So a model close to the
viewer has a higher level of detail and fills a larger area of the ren-
dered image, and a distant model has lower detail and fill a smaller
area. An example of this is illustrated in Figure 3.

Figure 2: Showing same model with different Levels of Detail

Figure 3: Showing models with different Levels of Detail at differ-
ent distance

5.2 Different categories of LOD

There are different ways of calculating good level of detail for mod-
els. Each has its own pros and cons.

5.2.1 Discrete LOD

A model can be represented at different levels of detail. Having
those different representations and choosing one of them depending
on its position relative to the viewer is essentially what happens in
discrete LOD. Making these models at different level of details can
be done either manually or automatically. Making these models
manually could be time consuming for designers, so today these
models are mostly computer generated.

These models could be generated off-line and therefore their opti-
mization would not be taking time away from the actual rendering.
This pre-optimization could entail optimizing for different render-
ing hardware or organizing geometry in triangle strips. As these
models are made without any knowledge of the scene or viewer, it
is not possible to take into consideration whether parts of the model
are hidden from the viewer and therefor could be of lower detail.

5.2.2 Continuous LOD

Instead of creating models with fixed LODs, continuous LOD uses
a data structure for the model from which a representation at any
LOD can be generated. This has the advantage over discrete LOD

5 LEVEL OF DETAIL 4

that any model can be represented at an optimal LOD which uti-
lizes resources more efficiently. Also, if a scene is changing over
time, transition between one discrete model, in discrete LOD, to an-
other may become apparent, which is not necessarily a problem for
continuous LOD. However, even with continuous LOD it is possi-
ble to notice the transition in states, but they are more modest and
techniques to minimize the effect exists.

Continuous LOD also supports the ability to continuously refine
the scene over time by increasing LOD for the models. This again
leads to the ability to stream models into the scene by starting with
a coarse model and refining it as more information is received about
the model.

When using continuous LOD run-time it might be costly to organize
data in a way which is optimized for rendering.

If the detail level depends only on the distance between the ob-
server and the geometry, then any region of the screen will contain
the same number of polygons. only if the roughness is taken into
consideration, the number can be different.

5.2.3 Detail defined LOD

Certain parts of a model can be more rough, for example in a land-
scape, a mountainous area is more varied or rough than a plain field.
In order to keep this appearance in a simplified representation, i.e.
a representation at lower LOD, it is necessary use more triangles on
this rougher part of the scene. Some measure of the models local
roughness is needed to be able to prioritize certain areas over oth-
ers. In [Roettger et al. 1998] S. Röttger et al. describes a method
to calculate what they call the surface roughness. Having this mea-
surement makes it easy to prioritize rough areas to smooth areas,
but it is recommend to use it in conjunction with some measure-
ment of distance to the viewer or otherwise view dependent method
section 5.2.4.

5.2.4 View Dependent LOD

Extending continuous LOD with information about the viewer al-
lows a more specialized LOD method called view dependent LOD.
Having information about the viewer gives the option of choosing
which LOD certain models of the scene need to be. Also the mod-
els orientation and topology can be used to decide its LOD. For
instance the part of the model facing the viewer should be more
detailed than the part not visible. The models silhouettes LOD are
also important. In this way a model has no longer a uniform LOD
as for instance discrete LOD. One could even take into considera-
tion the viewers point of interest in the scene and let periphery parts
of the scene have lower LOD.

Figure 4 shows an example of continuous LOD. The observer was
originally on the left hand side and was looking to the right.

5.3 Motivations for using LOD, visual quality vs in-
teractivity

Choosing a LOD technique depends somewhat on the applications
goal. If it is of great importance to render true to the original model
in a visual optimal fashion or if a high frame rate in some interac-
tive application is the main goal. Maybe there is a limited amount
of resources at hand, as for instance polygons or no preprocess-
ing is possible. In a interactive application one would usually try
to get optimal visual result using some constraints which could a

Figure 4: Showing View dependent LOD

fixed amount of resources. For example having a fixed number of
polygons for a scene, the goal is to use these polygons in a optimal
fashion so that the models LODs result in a better visual result.

5.4 An example

Using a camera with a field of view vertically 45 degrees, horizon-
tally 60 degrees and a resolution of 1024x768, it is possible to see
the effect of a constant LOD.

Assuming the terrain is defined by a hight map with height values
for each square meter then a mountain with a base of 20 by 20
square kilometers and a height of 10 kilometers would be repre-
sented by 400 millions height values or 800 millions triangles.

If one was to look at a similar pyramidal shaped landscape forma-
tion with base two by two square meters and height of 1 meters,
then it would be represented by merely eight triangles. Illustrated
in Figure 5

The two models has pronounced different details, but they will be
projected to the screen with an area of same size. Table 1 shows that
both fills 354x185 pixels on the screen. This means, the mountain
has 3 000 visible triangles per pixel, while the pyramid has less than
one triangle per pixel or about 30 000 pixels per triangle.

It is obviously a waste of resources visualizing the distant mountain
with such a high Level of Detail. At the same time, it is clear, that
the pyramid is represented at a too low level of Detail. There is
no advantage representing the terrain by more than one triangle per
pixel and its only an extra burden on the hardware.

6 ROAM 5

PyramidMountain

Projection plane

Figure 5: Showing the distant, large mountain and the nearer,
smaller pyramid

hm = 10km
tan(45/2)100km 768 pixels = 185 pixels

wm = 20km
tan(60/2)100km 1024 pixels = 354 pixels

hp = 1m
tan(45/2)10m768 pixels = 185 pixels

wp = 2m
tan(60/2)10m1024 pixels = 354 pixels

Field of View : 60 degrees wide and 45 degrees heigh
Screen : 1024 by 768 pixels.
hm : height of mountain
wm : width of mountain
hp : height of pyramid
wp : width of pyramid

Table 1: A distant large object and a near small object projected to
same screen size with constant Level of Detail

6 ROAM

We choose to use ROAM[Duchaineau et al. 1997] as our Level of
Detail algorithm. There are many other algorithms which all serve
the same purpose of generating or transforming a mesh with view
dependent continuous level of detail section 5.2.4, but we selected
ROAM because of its simplicity and because it is very well docu-
mented, easy to alter for various purposes and still performs quite
well compared to newer algorithms. See [Bradley 2003] for com-
parisons between ROAM and other algorithms.

ROAM comes in a newer version 2.0 [Duchaineau 2006], where
we use version 1.0, but 2.0 is still a work in progress and most of
the major changes are related to moving triangles faster through
the pipeline, at the cost of far greater complexity. ROAM 1.0 is
considered to be fast enough for most purposes.

In section 6.4 there is an example of a planar mesh being subdivided
to level 4. It may help the understanding of the following sections,
to refer to that example.

6.1 ROAM from 10 000 feet

ROAM is an acronym which stands for Real-time Optimally Adapt-
ing Mesh. As the name states, the algorithm optimizes a mesh
quickly enough to be real-time. By ”optimal” we mean to repre-
sent the more complex underlying surface with the least amount of
error, given certain constraints on time, triangle usage or perhaps
something else. The term ”error” could mean anything, but for our
purpose we will refer to visual error. That in turn means that we are
not dealing with the actual error, but rather the perceived error from
some specific vantage point.

A main property of ROAM is the fact that if neither the terrain nor
the observer changes, then the mesh also does not change. If the
viewer or terrain only changes slightly, then generally so does the
mesh. For an animated movement through a terrain this is an im-
portant property, since it takes advantage of the frame coherence
which normally exists. Some have suggested that it does not make
that big a difference, and have opted to not use it, as discussed in
section 6.8, and to settle on a simpler version of the algorithm.

6.1.1 Basic ROAM geometry

The basic ROAM geometry consists of two right angled isosceles3

triangles which are joined together along their common hypotenuse.
From that rudimentary form a more complex mesh can be generated
by subdivision. Such a base line aligned pair of triangles are called
a diamond. The error of a triangle is the difference between it and
the perfect subdivision. The error of a diamond is the maximum of
its two triangles errors.

We will refer to the right angled corner as the top and the hy-
potenuse as the base edge. With the triangle oriented so that the
base is down, the left and right edges are named left and right ac-
cordingly. The neighboring triangle along the left edge is the left
neighbor and the triangle along the right edge is the right neighbor,
and the neighbor along the base is the base neighbor, as seen on
Figure 6

 Base neighbor

L
e
f
t

n
e
i
g
h
b
o
r
 R

i
g
h
t

n
e
i
g
h
b
o
r

Split line

Right childLeft child

Figure 6: The standard ROAM triangle

6.1.2 Altering the mesh

If the mesh is not optimal, it will need to have triangles split or
merged to better minimize the total error under the given con-
straints. On Figure 7 you see a mesh at six different levels of sub-
division. The entire mesh is at a constant level of detail.

Splitting and merging given an upper and a lower error bound will
be done using two prioritized queues of triangles and diamonds.

3Only the 2D-projections of the triangles are right angled isosceles. In
3D they are not - unless they happen to lie in the plane

6 ROAM 6

Figure 7: Different subdivision levels [Duchaineau et al. 1997]

Figure 8: Cracks in a mesh which was not recursively split [Luebke
2003]

Splitting When a triangle is found to be too inaccurate, to repre-
sent the underlying detailed surface, within the given error bound,
it will be split along the base edge by generating a new vertex at the
center of the base edge, along the split line (Figure 6). This gives
rise to a parent child relationship where the split triangle is the par-
ent of the new two triangles. This is most commonly stored in a
binary tree.

If triangles are naively split along the base, as described above, then
you will end up with cracks in the mesh as seen in Figure 8. This
means that in order to split a given triangle, you will need to split
its base triangle as well. If the base triangle is not of the same
subdivision level as the current triangle (if its base is not the current
triangle), then it must in turn be split recursively. This recursion
ends when two triangles have each other as base neighbors. An
example of such a recursive split can be seen on Figure 9.

Splitting is done using a loop as seen in Listing 1. T is a triangle. Q
is the priority queue of triangles ordered by the error. The queue is
accessed through push and pop, which make ordered insertions and
extractions.

When recursion ends A problem with recursion is when a mesh
is optimized under some constraint on the maximal number of tri-

Figure 9: Recusive triangle splitting [Duchaineau et al. 1997]

angles. At some point a triangle is found to be too inaccurate, and
should be split. At this point we could have 6 triangles left on the
budget and we split the erroneous triangle. It just so happens that
the split needs to split yet another triangle and then yet another and
so on. At the end of the chain we arrive at a triangle which can be
split and we do so, and now return back up the recursion, but before
we reach the original triangle (the one most in need of being split),
we run out of triangles. This means that we used all the triangles
for splitting less important triangles. The guarantee of an optimal
mesh under the given constraints is no longer a given.

Listing 1: Pseudo code for optimization by splitting

1fo reach T i n Q
2T . E r r o r ← C a l c u l a t e E r r o r (T)
3T ← Q.Pop ()
4whi le (T . E r r o r > UpperErrorBound)
5{
6[T1,T2] ← S p l i t (T)
7T1 . E r r o r ← C a l c u l a t e E r r o r (T1)
8T2 . E r r o r ← C a l c u l a t e E r r o r (T2)
9Q.Push(T1)
10Q.Push(T2)
11T ← Q.Pop ()
12}

Merging If a diamond section 6.1.1 is mergable, and is too de-
tailed, it will be merged into the parent, and the mesh will be re-
duced by two triangles. It may sound strange that the mesh can be
”too detailed”, but the optimality is dependent of total error over all
triangleswith certain constraints, such as the number of triangles.
Therefore the triangles might be put to better use elsewhere on the
mesh.

A diamond is ”mergable” if the two triangles, which it consists of,
are both split once, and if their children in turn are not split. On
Figure 10 such a mergable diamond is shown on the right hand
side, with a merged/unsplit triangle on the left hand side.

Merging is done using the following loop. D is a diamond.QD is
the queue of mergeable diamonds ordered by the error of D, which
is accessed through push and pop.QT is the queue of triangles.
E(D) is the error of D and E(T) is the error of T.

1. For each D inQD calculate E(D)

2. D = Pop top fromQD

3. While E(D)< lowerErrorBound

6 ROAM 7

Figure 10: Splitting and merging with ROAM [Duchaineau et al.
1997]

4. Merge D intoT1 andT2

5. Calculate E(T1) and E(T2)

6. PushT1 andT2 into QT

7. If T1 or T2 are now in mergeable diamonds, then push the
diamonds intoQD

8. D = Pop top from Q

9. End while

6.2 Prioritizing the triangles

For the splitting and merging to result in an optimal mesh, you need
to always split the triangles with the largest error and merge the di-
amonds with the least error. For that to happen you will need to
decide on how to represent the term ”error” in the algorithm. The
original ROAM description uses world space differences projected
to screen space, but error could be anything. It could be the differ-
ence in color, the movement of a coast line etc. In section 6.9 we
will go into detail with the ordinary geometry error metrics and in
section 16 we deal with other priorities which we consider relevant
for our application.

As stated previously we consider error to be visual error as seen
from a specific vantage point.

6.3 Boundaries and ROAMing a sphere

An issue, which we have ignore till now, is the boundary con-
ditions. What happens on the edge of the mesh? The edge is
where a triangle shares one of its edges with no one. The original
ROAM[Duchaineau et al. 1997] deals with this by always allowing
splits and merges on the edge, as long as the diamond or triangle
part of the split/merge allows it. We can however deal even more
relaxed with it. We do not have an edge.

Our mesh might be perceived as a 2D map (which it is), but it is also
the surface of a spherical shape. The mesh therefore wraps around
and connects with itself, thus eliminating any edges. This does,
however, mean that the base mesh can not be a single diamond.
instead it must be a shape with volume. Any shape with volume
will do. The smallest such shape is a tetrahedra which consists of
four triangles. An easier shape to define would be a cube consisting
of 12 triangles. The complexity of the base shape does not affect
the complexity of the final mesh. A more complex base shape will
simply be subdivided less in subsequent optimization steps.

6.4 A ROAMing example

The mesh (Figure 11) starts as two right angled isosceles triangles,
which define a diamond. The diamond is splitable since neither one
its triangles have been split already. For some reason we have a spe-
cial interest in the area near the star, and want that part to be more
detailed. Our priority, in the example, is to always generate finer
detail around the star. We will not do any merges, but only splits,
since the priority (the star) does not change between the different
steps.

The optimization steps result in the construction of the binary tree
in Figure 12).

1. The star is inside A, so it should be split. In order to split A
we must split B as well. A is split into C and D while B is
split into E and F.

2. Now the star is inside C which we will split. Any triangle on
the edge can be split section 6.3 and C is now split into G and
H

3. We now want to split H, which isnot inside a splitable dia-
mond. Therefore we must first split its base neighbor which
is F. F can be split into I and J.

4. Now we can split H by also splitting its base neighbor I. H is
split into K and L while I is split into M and N.

5. The star is inside L which must be split. L is not in a splitable
diamond, so first its base neighbor G must be split. G is not
in a splitable diamond either, so its base neighbor D must be
split, which is can. D is split into O and P.

6. Now we can split G into Q and R while we split its base neigh-
bor P into S and T.

7. The recursion has returned to splitting L which is now possi-
ble. L is split into U and V while its base neighbor Q is split
into W and X

8. The optimization can continue till we have reached a maximal
number of triangles, or till the mesh is sufficiently detailed
around the star.

During the optimization, the binary tree on Figure 12 was built.
Care must be taken to make a triangles left child its left node in the
tree. This is important when reading out the triangles as one long
winding strip and we will do in section 6.6.1.

6.4.1 Prioritized queues

The data structures, used to contain the prioritized queues of tri-
angles and mergeable diamonds, need to be quite fast. It will be
used extensively to extract from and insert into. The most common
structures are doubly linked lists and binary heaps.

Doubly linked list This data structure is very easy to implement
and understand. It is easy to only allocate the memory currently
needed and allocate more as the list grows. For smaller datasets
it will often be quite fast. Ordered insertion is O(n) and ordered
extraction is O(1).

Binary heap A binary heap is a little more complex to imple-
ment and it usually has a larger overhead. You generally need to
allocate all the memory, which will be needed in the future, from

6 ROAM 8

1

2

4

5

6

7

8

Figure 11: ROAM subdivision in 8 steps

Figure 12: A binary triangle tree containing a ROAM

the start, since it will be quite time consuming to expand (reallo-
cate) the structure later on. It is however a very quick structure
for anything but tiny datasets. Ordered insertion is O(log n) and
ordered extraction is O(log n) as well.

Comparison For smaller datasets and for simple tests, which has
no great need for speed, the doubly linked list is the logic choice
over the heap. However, for use in ROAM, which needs to be some-
what speedy, and especially for use in a ROAM of the size which
we are intending to use it for, the heap is the better choice. Dou-

bling the detail level of the mesh will only increase the workload
by one4 whereas the workload will have doubled for the list. This
is a very dominant factor when we are talking about a mesh with
several hundred thousand triangles.

6.5 Memory usage

It is generally preferable to preallocate memory if many objects
will be created and destroyed runtime, and if this should be done
as quickly as possible. For that reason, it is relevant to know how
much memory should be set aside.

If you define an upper bound on the number of triangles, you can
make the following assumptions about memory usage.

Vertices The relationship between the number of vertices and the
number of triangles is linear.

Every subdivision will result in two triangles being split into four
new triangles with a common top vertex. The common vertex is the
newly generated vertex in the mesh.

If your base mesh is a cube consisting of 12 triangles and 8 vertices,
then the subdivision will result in removing two triangles5, creating
four new child triangles and one new vertex. In other words, you
add half a vertex for each new triangle.

The relationship between triangles and vertices is therefore always
(1).

nvertices
ntriangles

2
+2 (1)

A mesh of 64 000 triangles would need 32 002 vertices.

Triangles If triangles are stored in a binary tree, then even after
a triangle is split, and is no longer visible, it still exists as a parent
in the tree. This means that splitting a diamond results in creating
four new triangles, hiding two and not deleting any.

If the mesh starts out as a cube with 12 triangles, of which none have
parents, then it is not an ordinary binary tree with a single root, but
rather a tree with 12 ”roots”. Every time the mesh is subdivided,
you double the number of visible triangles.

For 16 000 visible triangles, the tree will need to hold 31,988 trian-
gles as shown in (2).

ntriangles= 2 ·nvisibleTriangles−12 (2)

Diamonds Each splitting of a diamond results in a mergeable
(Figure 10) diamond. At the same time zero, one or two previ-
ously mergeable diamonds should now be considered non merge-
able (Figure 10).

How many diamonds are non mergeable depends on whether the
triangles in the split diamond were part of mergeable diamonds be-
fore the split.

It is therefore not easily defined how many of the total number of
diamonds, that are mergeable. Whatcan be said is that the total
number of mergeable diamonds is never greater than1

4 of the total

4It will generally be one iteration
5a triangle and its base must split together

6 ROAM 9

number of diamonds since any triangle can at most be part of one
diamond, and a mergeable diamond contains four triangles. Each
subdivision of a diamond

Every subdivision of a diamond creates one new diamond, which
is mergeable. This implies that the total number of diamonds, both
mergeable and non mergeable ones will be given by (3). Given an
upper limit to the number of triangles, we now have the upper limit
of diamonds.

ndiamond=
nvisibleTriangles−12

2
(3)

6.6 Rendering a ROAM

To render the ROAM, you need to extract the visible triangles from
the binary tree. By visible, we do not mean triangles which are
within the view frustum, but rather triangles which have not yet
been split into more detailed child triangles. The visible triangles
are therefore the leafs of the tree as seen on Figure 12

There are generally two ways of doing this.

One method entails maintaining a list of visible triangles next to the
binary tree, and letting the elements in this list point into the leafs
of the list. Another method simply runs through the entire tree and
outputs the leafs.

Though it is slightly faster to iterate through a simple list, it is only
twice as fast as running through the tree. This is due to the property
of a binary tree, whether it is balanced or not, which ensures that
half the nodes in the tree will always be leafs while the other half is
not. This means that for each leaf, the reader method will have to
touch two nodes.

While being somewhat faster, the simple list suffers from a main-
tenance overhead. When triangles are altered, you have to update
the treeand the list. This takes time and complicates the code. It
also makes it more problematic to obtain the correct ordering of the
triangles, as we describe in section 6.6.1.

We opt for the tree on its own, and do not want to implement the
extra list.

6.6.1 Triangle ordering and format

An issue with ROAM, which has been considered its greatest weak-
ness, is that it generally renders the triangles in an arbitrary order.
This makes it impossible to use triangle strips, which would yield
better performance on modern graphics cards. Triangle strips (Fig-
ure 13) are faster than a sequence of isolated or unordered triangles
because it requires fewer vertex transformations. Each new triangle
introduces one new vertex, while the other two vertices are recycled
from the previous triangle. By recycling we mean to say that it is
cached on the GPU, so that its screen transformed position can be
reused as is.

To output a triangle list, you need the triangles to be output in a
special order as seen on Figure 14. The last two vertices output
will be the first two vertices of the next triangle. The winding order
of the triangles also has to change between each triangle. The first
triangle, of the strip, on Figure 13 has clockwise winding while the
second has counter clockwise winding and so on. This is the way a
graphics card expect the triangles, and if the format is not followed,
it will result in errors.

The strength of triangle strips is the caching, but the cache is used
for all indexed geometry and not just triangle strips. Most current
graphics cards have a vertex cache of 21 vertices. This cache can be
used when dealing with indexed geometry. With indexed geometry
you provide a list of vertices and then you render separate triangles
by indexing into the list. The triangles, shown on Figure 13 in the
triangle strip, are made up of 5 unique vertices. This could be ren-
dered as a list with the 5 vertices and then a sequence of indexed
triangles such as [1,2,3],[2,4,3],[3,4,5]. This will result in the vertex
cache being used. When vertex 2 has been transformed to screen
space, it is stored in the cache. When the next triangle also indexes
vertex 2, then it is fetched from cache, which is much faster than
transforming it again.

Using indexed triangles can provide the same gain in speed, if the
cache is utilized well. With a small cache of 21 transformed ver-
tices, you will need to ensure that the vertices are somewhat or-
dered. If a vertex is being used too long after the first use, then it
will have been evicted from the cache, and it will be transformed
once more.

We have concocted a method which can generally read triangles
from the ROAM in optimal order. The method can not make any
guarantees as to winding order so it can not provide a triangle strip.
It can however utilize the cache very well. The method ensures that
each new triangle only brings one new vertex into the cache.

6.6.2 A winding way through the mesh

When moving through the tree, to output triangles for rendering,
the left-child right-child order is reversed for each level in the tree.
You will start the recursive read at the root by moving down the left
branch, then the right and then the left and so on until you reach a
leaf. When reaching a leaf you return up a level and now take the
other branch down. This simple pattern is repeated till all leafs (the
visible triangles) have been read out.

The quick reasoning for this patterns is that a triangle is connected
to neighbors at the same level through its left or right side to the
neighbors left or right side. When staying at the same level, we go
through the sides. When a neighbor is at a lower level (it is smaller)
then we connect to it through our left or right side into its bottom
side. When a neighbor is at a higher level we connect through the
bottom to its left or right side.

Looking at the tree in Figure 12 the read pattern will result in the
following sequence: O,T,S,R,W,X,U,V,K,N,M,J,E. At the root we
move to the left and reach A. From A we move right to D. From D
we move left to O. O is a leaf and is output. We return up the tree
to D where wethis timemove to the right, since we have already
gone left at D, and reach P. From P we move right to T, since P is a
right-first level. Remember that its parent D was a left-first level. T
is a leaf and is output. From T we return up to P and now go left to
S, which is a leaf and is output. Now we return all the way up to A
where we this time move left. This goes on until the entire sequence
has been read out. Figure 14 shows the ordering on the mesh, where
it can clearly be seen that each triangle shares two vertices with its
neighbor.

We will make quantitative tests of this method to show the cache
utilization with the normal triangle ordering of always-left-first ver-
sus our alternative ordering.

6 ROAM 10

Figure 13: Triangles ordered as strip or list

Figure 14: A winding, but ordered, way through the ROAM

6.7 Decoupling rendering and optimization

All previous implementations of ROAM, which are known to us,
synchronize the update frequency with that of the rendering. The
mesh is optimized, then rendered, then optimized again over and
over. The optimization of the mesh generally takes much longer
than actually rendering it. The optimization then becomes the lim-
iting factor when trying to obtain a high frame rate.

We may need a frame rate of at least 30 FPS to give a smooth ren-
dering experience, but does the mesh really have to be optimized at
the same speed? If we fly close above the landscape with a speed
of 100 m/s, then we have moved 3.33 meters in between frames.
How much does the landscape have to be optimized to take that
movement into account? The answer is ”it depends”.

There will be times where a movement of one meter will change
the scenery from a cliff wall to a large view over the landscape. In
that situation, it does matter quite a lot. Mostly, however, the scene
will be the same and we need not update the mesh between each
and every frame.

Looking forward What we need is a terrain which is optimized
for more than one vantage point. It should be optimal as seen from
every discrete step (frame) along the camera path. While it may be
theoretically possible to render such a terrain, it will be somewhat
slow, and we do not believe it is a path worth exploring further
right now. What we suggest is to find an average of the cameras
positions, and orientations, and optimize for that.

By average position, we mean to calculate where the camera will

be, and how it will be oriented att + 1
2∆t where∆t is the time in be-

tween updates. This can be done very easily by making a one step
Euler integration over time as in (4), wherecamera′(t) is the current
linear and angular velocity of the camera. This method takes only
the current camera properties into account, and assumes that the ve-
locities of the position and the orientation, are constant throughout
the time step. While other estimates could take multiple previous
positions and orientations into account, and deal not only with the
cameras first derivatives (velocity), but also with its second deriv-
atives (acceleration) it will seldom be worth the trouble. It should
not make much, if any, visible difference which method is used,
since the camera will generally not move too abruptly, so the linear
and rotational acceleration will be very low.

camera(t +
1
2

∆t) = camera(t)+
1
2

camera′(t)∆t (4)

Relaxing it a bit It should be a good approximation to optimize
for one half time step ahead, but we need to be a bit more relaxed
on the error calculations when optimizing. If triangles are culled
exactly when they are out of view, and thus are not subdivided into
finer geometry, then that will be just fine for that specific location
and orientation, but if we move ever so, the culled triangle will
come into view and the scene will look rubbish. Since the scene is
being used for more than a single frame, odds are that the triangle,
which is culled from the strict optimization att + 1

2∆t, will at some
point, in the interval[t..t +∆t] be visible. There are two easy ways
to relax. One is to widen the field of view somewhat. How much
exactly, is to be find through trial and error. It will depend on how
the camera is being moved and on the terrain. The other method is
to move the camera a little up from the ground. With a terrain with-
out overhangs, you will always see more of the terrain the higher
you are, so more of the terrain will be considered important and get
prioritized in the update.

There is always a downside The mentioned method has many
valuable properties, but it does come at a cost. When one update
must optimize for more than one (different) frame, no single frame
will be optimal. This means that for any given frame, the mesh will
be likely to have fine detail which is out of view, and the geometry
which is in view will have less detail, because valuable triangles are
wasted outside the field of view, and because the current frame can
see geometry which was culled entirely in the central frame used
for optimization.

Multi core systems Systems with more than one processor/core
will benefit greatly from this separation of mesh optimization and
rendering, since now one processor can render at full speed while
the other optimizes at full speed. While the mesh optimization itself
is hard to parallelize6, the separated optimization and rendering is
born for dual processing. Should it be, it can easily be reworked to
run on even more processors. Three obvious tasks exist: optimiza-
tion, copying the optimized mesh to the graphics card and rendering
the mesh.

The conclusion This method has its down sides, but they are
few. The visual degradation, that we should expect, can be entirely
outweighed by the larger number of triangles that we are able to use
now that we do not have to restrain the mesh optimization in order
to get an acceptable frame rate.

6We know of no implementation which parallelizes ROAM

6 ROAM 11

It is worth noting that the above mentioned method requires the
mesh to be duplicated. One copy needs to be located on the graphics
card while being rendered, and another is located in system mem-
ory while being optimized. One additional copy is needed since
the optimized mesh will be copied from system memory to graph-
ics memory while the mesh is being rendered. This means that
two meshes should exist on the graphics card, so that one can be
rendered while the other is being overwritten with the newly op-
timized version. When the rewrite/copy is complete, the renderer
can switch to the newly optimized mesh and render that while the
optimization and copy to graphics card is running on the other copy.

6.8 Variations of ROAM

Split only It has been suggested that the overhead of maintain-
ing two separate priority queues, and transforming the mesh from
frame to frame, is somewhat wasted effort[Polack 2003]. Some ar-
gue that the frame to frame coherence is in fact not large enough to
warrant the more complex code, and perhaps it will provide better
performance, and simpler code, to start from scratch with the base
mesh every frame and then subdivide till the error bounds have been
met. The basic argument is that the majority of geometry is gener-
ally near the observer, and if the observer moves, then the part of
the scene which is close by, will often move out of view thereby
greatlychanging the priority of most of the geometry. It is clearly
a much simpler approach, but whether it is a good idea depends
largely on the way the terrain and observer behave.

Geo morphing When a triangle is suddenly split into two and
the midpoint is offset, then this might cause what is known as ”pop-
ping”. From one frame to the next, the geometry pops up or down.
Even pops which seem small in screen space can be very visible be-
cause of the way humans observe the world. Fast movement, ever
so small, catches our eye. To reduce the popping problem, you can
implement geo morphing[Snook 2003] which stretches out the pop
over several frames. You subdivide as before, but at first the new
vertex, at the midpoint, is positioned on the old baseline. Then over
the next few frames it is moved up to its actual position. If the ob-
server is not stationary, then such a slow movement of the terrain
will not be noticeable since the entire scene will already be mov-
ing through the field of view. We will implement geo morphing
and test it relative to no morphing and make conclusions about sub-
jective performance in our scene. Geo morphing requires that one
does not rebuild the entire bin tree of triangles every frame, since
this will prevent morphing. There are no longer two states to blend
between.

6.9 Ordinary ROAM error metric

The original ROAM [Duchaineau et al. 1997] uses the world space
difference between the current triangle andall of its lower subdi-
vision level triangles. That difference is then projected into screen
space, for some camera location and orientation, where it is mea-
sured as pixel difference. Figure 15 shows such a projected error
for a 1D example.

Obviously, the larger the area of the projected difference, the larger
the error look on screen. However, defining the difference and then
projecting it to screen is in no way a cheap operation, and it is some-
thing which has to be done every time the mesh is optimized.

Figure 15: Projected ROAM error [Duchaineau et al. 1997]

6.9.1 Alternative ROAM error metrics

The original ROAM metric is ”correct” but expensive. Perhaps the
error can be calculated ”well enough” in a much cheaper fashion.
After all, this is all about making a visual impression which works,
and not about making anything with greater accuracy than what will
actually be noticeably.

Projected midpoint vector Instead of projecting the entire dif-
ference area, perhaps it will sufficient to project a vector from the
midpoint of the current triangles base edge to the new vertex (Fig-
ure 6) on the two triangles of a lower subdivision level. Then the
length of the vector, in screen space, would accurately represent the
movement of the midpoint, though not the area of the movement.

Simple distance The general rule is that the perceived width and
height of an object is halved whenever the distance to it is doubled.
That in turn means that the area is one quarter that of before. The
same thing can be said about the size of the error. The projected er-
ror vector, as mentioned before, will decrease in length as it moves
farther away, and the projected error area will decrease even faster.
Not all triangles have the same world space error, but when we con-
sider the perceived error, it is a result of distance and actual error.
The distance term will generally dominate the actual error, so one
might argue that the distance from observer to triangle could be
used as a rough, but very fast, error metric. Either as1distance or

1
distance2 .

Distance and view vector Errors result in movement away
or towards the center of the planet. That means that when the
view vector is at a right angle to the vector from the planet cen-
ter to triangle (the radius vector), then the error will be far more
visible then when the view vector is parallel to the radius vector.
This observation could be combined with the simple distance met-
ric to form a perhaps superior metric, which would be defined as
1−dot(radiusVector,viewVector)

distance .

It is impossible to know which of these metrics will perform best.
It depends on various factors and can really only be determined
through testing.

7 BOUNDING VOLUMES 12

6.9.2 The uncertainty of lower subdivision levels

A problem, not mentioned before, is that while ROAM is originally
designed to deal with preexisting geometry, we will generate the
geometry on the fly. ROAM is designed to work in a bottom up
fashion with full knowledge of the details, which are then simpli-
fied. By generating details, as we do, we are working top down
and therefore do not know the details before we actually calculate
them, and we can not go all the way down, due to computational
cost. The whole idea with our CLOD scheme is to not calculate
geometry which is not shown, and now we need to calculate the
finer details for triangles which we might not even want to split into
a finer mesh. This is a problem.

Obviously we can not deal with the difference between the current
subdivision level and all the lower levels. As argued in section 3 all
the detail of the world, even at a fairly rough scale, will be unman-
ageable.

The solution could be to only deal with the first lower subdivision.
A triangle of level 5 would contain the calculated position of the
level 6 vertex. That way the triangle can quickly enough decide on
its error. It is not truly accurate since the offset to level 7,8,9 are
considered to be zero, which they might not be.

As described in section 9.6.1 the possible offset between each sub-
division level decreases the deeper you go. An often used factor of
decrease is two, which means that the maximal possible error intro-
duced by a finer subdivision level will always be half of the max-
imal possible error on the current level. Knowing this factor, you
can establish an upper bound on the error, and use that for prioritiz-
ing. Again it is not correct per say, but it does allow us to choose
the best candidate for subdivision given the limited information that
we have.

Upper error bound If we for a triangle know the position of
the base edges midpoint on the subdivision one level finer than the
current, and we know how the maximal possible error is scaled,
then the upper bound will be given by (5).

errorBound=
i=∞

∑
i=0

maxO f f set
scaleFactori

(5)

Which reduces to (6) for a scaling factor of 2.

errorBound= 2maxO f f set (6)

We can therefore with a certain degree of accuracy consider the
world error of a triangle as the distance between its current midpoint
on the base edge and the next finer subdivision levels vertex plus the
upper error bound times two. It is given that the error is not larger.
It can be smaller, but not larger.

Another perspective on the error/possible offset of children is given
in section 7.2. The method mentioned there can calculate the upper
error bound for a given scaling without the need to actually calcu-
late any deeper subdivision levels.

7 Bounding volumes

There are many situations in which one needs to test if a given tri-
angle is colliding with some other geometry. When testing for vis-
ibility, we need to determine if the triangle is entirely outside the
view frustum, or if it is inside. If we need to place structures on the

Figure 16: A minimal bounding sphere for a right angled isosceles
triangle

ground surface, we need to refine the terrain at that specific loca-
tion, and if visibility testing to a specific area is done with line of
site, we need to see if a line intersects with a triangle.

A bounding volume can be used when performing test for clipping
and intersections. One generally tests if the volume is contained
wholly inside or outside another volume. This other volume could
be a view frustum, and it could be something else like another 3D
object with which the first object should generate a CSG7 model.

7.1 Optimal bounding volume

An optimal bounding volume has a very tight fit around the
bounded object, and allows for very simple clip testing. Generally
speaking, the more tight fit, the less simple the clip testing is. An
exception to this is a sphere, where a perfect fit is obtainable from a
bounding sphere, and the calculations are very easy. When dealing
with a triangle, one can take advantage of the fact that a triangle
is always contained in a plane, which simplifies things, but still all
three corners need to be tested for clipping. Another volume could
be a small box which contains the triangle. If it is axis aligned,
then it can fit quite tight. Boxes still require a few too many com-
putations when dealing with volume-volume intersections. For that
purpose the simplest and fastest method is to use bounding spheres,
where one can always say that if a spheres center is more than its ra-
dius outside another volume, then the contained object is certainly
outside.

For a right angled isosceles triangle a valid bounding sphere would
be centered on the midpoint of the hypotenuses, and have a radius
of half the hypotenuses. The three corners of the triangle would all
touch the sphere, which can not be any smaller. It is evident that the
bounding sphere is not a tight fit, but it is simple, and besides that,
the bounding volume needs to contain not only the triangle, but also
all its descendents.

For one triangle this is a suitable bounding sphere, but if the trian-
gle is to be split, then its children might expand outside the original
bounding sphere, which is a problem. A bounding sphere must be
guaranteed to contain the entire primitive and, when dealing with
primitives which can be refined, to contain all child primitives. As
can clearly be seen, the bounding sphere will be broken if the trian-
gle is subdivided in such a way that its new geometry is offset by
more than the spheres radius. Even when the offset is not that large,
subsequent subdivisions can still move the child primitives outside
the original sphere as seen on Figure 17

7Constructive Solid Geometry

8 Z-BUFFER ACCURACY 13

Figure 17: The bounds being broken by subdivision

7.2 Breaking the bounds, and expanding them

The result of children breaking the boundaries (as children often
do ;-)), is that tests performed on triangles based on the bounding
spheres, will fail. This can for example make triangles, which are
in plain view, appear as if they are outside the view frustum. We
need to expand the bounding sphere based on how much we allow
the child objects to be displaced. The more each subdivision can
be offset, the more the bounding sphere must be expanded. As can
visually be seen from Figure 17, the vertical distance from the base
line and to the top of the finest triangle is approximately the dou-
ble radius. The illustration shows subdivision where the offset each
step is half the length of the original line. In (7) the relationship
between vertical and initial radius is shown, where L is the initial
line length andδ is the scaling in each step. Aδ of 1

2 would imply
that each offset is one half the length of the divided line segment.
The equation follows naturally from the observation that if a line of
length L is displaced12L to form two new line segments of length
1
2L, which are again displaced their half length, then the worst case
scenario, where every displacement is in the exact same direction as
the previous, will move half the length of the previous move. This
is the summation in (7), and that defines the upper bounds (the con-
vergence) for the expansion. On Figure 17 the subdivisions are not
all moving the same direction, but every second subdivision is. This
means that twice as many steps are needed to move a certain dis-
tance away from the initial triangle, but for an endless summation
it amounts to the same upper limit.

A sum in the form of (7) can be transformed from an endless sum-
mation into (8), which is undefined forδ ≥ 1, since it does not
converge. We can obviously not have an upper limit on the offset
if we keep expanding the line segments, rather than making them
smaller. This shows that forδ = 1

2 we get an offset r ofL, where a
δ = 1

3 would give us1
2L. The higher the division factor each step,

the less the radius expands.

Figure 18: The bounds being broken by subdivision

r =
∞

∑
i=1

Lδ i (7)

r =
L

1
δ −1

(8)

For a scaling factor of13 we had an offset r of12L which is the radius
that we used originally. This implies that for scaling factors of1

3
or less, the naive bounding sphere will work. For scaling factors
above1

3 it will not.

The resulting value r, is the radius of a bounding sphere centered on
the initial baseline, if it is at least as long as1

2L. If r is smaller, then
the bounding spheres radius is1

2L, so that bounding sphere radius
is max(1

2L, r)

An example of a cube, consisting of 12 triangles, which are subdi-
vided a number of times with a scaling of1

5 , is shown in Figure 18.
It is apparent that the cube expands most in the direction normal to
the surfaces of the initial form, and then in the next subdivision it
expands again most in the normal direction, but not as much as in
the first step. This has the effect of making round expansions which
again have round expansions on the, which again has... The initial
cube is contained within the current object, and can not be seen any
more. The cube is in a sense a slightly altered 3D-version of the
Koch snowflake.

r =
√

2(r0 +
r0

δ −1
)2 (9)

8 Z-buffer accuracy

The meshes that we render are huge. An Earth-sized planet presents
a terrain spanning 12 742 kilometers from end to end. From nearest
point to farthest point there is more that 6 000 kilometers. It is not
so much a problem of many triangles, since we will have optimized
the mesh to make the best of some limited number of triangles,
as a problem of scale. The depth buffer on the graphics card will

8 Z-BUFFER ACCURACY 14

need to have high precision to allow for such a large scene, and
still be able to correctly order pixels from the ocean floor and the
surface of the shallow ocean near the shore. If the buffer is too
inaccurate, then sometimes the ocean floor will be rendered on top
of the ocean surface. If the camera is moving, then this will give a
flickering shore line where sometimes water is rendered on top, and
sometimes it is rendered as if below the ocean floor.

We find a 16 bit depth buffer to have too low accuracy, and one of
at least 24 bit should be used. The Direct 3D API supports buffers
of up to 32 bit, but as of 2006 most, if not all, graphics cards does
not support this.

Assuming that we have a near and a far clipping plane separated by
7 000 000 meters, the space in between is large enough to hold one
half Earth-sized planet8. The best accuracy of a 16 bit z-buffer, as
calculated by (10), will then be 106.81 meters, which is certainly a
problem for shallow water, and can be a problem in the landscape
when landscape features are close together. For a 24 bit buffer the
accuracy will be 0.42 meter, which is far better, and will generally
be good enough (as we are looking down from orbit), if the near and
the far clipping planes are placed as close together as possible. The
problem can get worse if the planets are really huge, or if we need to
render a planet and a moon at the same time. With the huge planet,
the 24 bit will still often be enough. If not, then a ROAM, which is
spawned from 12 parent triangles, can be split into separate objects
for rendering, which we sort manually and render back to front. For
the situation with a moon and a planet, we also sort by distance and
render back to front and each time fit the clip planes nicely around
the currently rendered object.

accuracy=
f ar−near

2bitDepth−1
(10)

8.1 Squeezing the planes

As (10) shows, the closer the clipping planes are, the better the
accuracy. A person without much experience in 3D programming
will often be tempted to place the near clipping plane just in front
of the camera, and the far way out in the distance. This is easy
way to ensure that the observed geometry will actually be within
the clipping planes and be visible, and might even work, but it is
in general a bad idea since the z-buffer accuracy drops drastically.
What we need to do is to move the near clipping plane out as far
as possible and to move the far in close. If optimally positioned,
the geometry will fit exactly in between and we get full use of the
z-buffers range from 0 to 1.

Figure 19 shows the optimal placement of the near and the far clip-
ping planes for arbitrary geometry. The far clipping plane is moved
in so close that it touches the farthest point on the geometry, while
the near clipping plane is pushed out so far that it touches the near-
est point of the geometry. Moving the planes any closer together
will clip the model, which is generally not desirable.

While that clip plane placement if optimal for the geometry, viewed
in that direction, it is not optimal if the geometry is not entirely
inside the view field as is the case in Figure 20. In that situation
we no longer consider the nearest or farthest points, but rather the
nearest and farthest point which are visible. That means that we
can, in that situation, move the near clipping plane out to the nearest
point inside the view field. That point happens to be where the right
side of the view frustum (the right clipping plane) intersects with
the geometry.

8No more than half a sphere be seen from any point at any one time

Figure 19: Naive placement of near and far clipping planes for ar-
bitrary geometry

Figure 20: Almost optimal placement of near and far clipping
planes for arbitrary geometry, taking into account that not all the
geometry is inside the view field

The situation in Figure 20 is still not optimal since much of the
geometry is hidden behind itself, as seen from that specific view
point. This is known as ”self shadowing” which is a term mainly
used when dealing with lighting. There is no need for the far clip-
ping plane to be out as far as it is, since it is taking geometry into
account which is actually not visible, even though it is inside the
view field. Dealing with arbitrary geometry it is not a simple task
to figure out where the self shadowing starts and ends.

We are however not dealing with arbitrary geometry, but rather with
a spherical planet with tiny perturbations. For a sphere, it is not that
difficult to calculate the point where self shadowing starts and ends.
That point, or rather that circle, is the horizon. The horizon is where
the line from the observer to the surface of the sphere, is coincides
with the tangent at that point.

Figure 21 shows the optimal clip plane placement for a sphere. It
takes into account that some of the sphere is behind the horizon,
and it takes into account that some of the sphere is outside the view
field.

How good is good enough? An average height person standing
at the beach with the feet at the water-line will generally see the
horizon 5 kilometers out. When rendering from that perspective, a
24-bit z-buffers accuracy of 42 cm (for a 7 million meters span) is

8 Z-BUFFER ACCURACY 15

Figure 21: Optimal placement of near and far clipping planes for a
sphere which is partially outside the view field. The green line is
the line of site for the horizon point

not enough to avoid rendering errors, since the water surface might
be less than 42 cm above the ground level, but if the clipping planes
are placed optimally, the span between them need not be more than
5000 meters (actually 5 000 m minus 1.7 m, which is the persons
eye height). That will then give an accuracy of 0.29 mm, which
certainlyis enough.

8.2 Optimal clipping plane placement

How do we ensure that the clipping planes are only far enough apart
to contain the visible geometry, and are always that far apart?

Figure 22 shows a view frustum with a field of view at 90 degrees
to easier illustrate the point. The clipping planes are based on the
optimal clipping points A’ and B’, which are A and B projected
onto the view vector.

A is given by the intersection of the view frustum and the sphere
defining the planet. The illustration is in 2D, but, as Figure 23
shows, the point of intersection in 2D and 3D is the same. The
point A is the intersection that we get from intersecting a 2D line
and a circle, while Q (or rather the line between the Q points) is the
intersection in 3D between a plane and a sphere.

B is the horizon point, which is defined as the point at which the
vector from the eye point becomes the tangent of the circle. That
is the point at which the horizon starts and from which the terrain
farther out is not visible. On Figure 22 only the green segment of
the circle is visible, even though the red segment is also inside the
view frustum.

3D as 2D The 2D version of the clipping can be thought of as
the projection of the 3D world onto a horizontal and a vertical plane
through the view frustum. Define the horizontal plane as going
through the eye point and having a normal vector pointing ”up” in
the view - the cameras up vector. Define the vertical plane as going
through the eye point and having a normal vector pointing ”right”.

Now project the sphere onto the two planes and it becomes a two
2D representations. In Figure 22 the field of view was defined to be
90 degrees. In the two 2D spaces, the field of view is respectively
the field of view and the field of view times the aspect ratio - if the
view field is not square.

Figure 22: The optimal near and far clipping points for a view frus-
tum observing a sphere. The near clipping point A’ is A projected
onto the view vector and A is the intersection of the view frustum
and the sphere. The far clipping point B’ is B projected onto the
view vector and B is the point where the vector from the eye is the
spheres tangent

Figure 23: The intersection points of a view frustum and a sphere

8.3 Calculating the clipping points

The calculations will be explained in 2D and use the symbols from
Figure 22. We need this in 3D, but as explained previously, 2D can
show what is going on more clearly. The only extra complication is
that the calculated A and B points, and their A’ and B’, might not
be the same for both 2D projections (projections were explained in
previous section). If one A’ is closer than the other, then we need to
use the closest one, and if one B’ is farther away than the other, then
we need to use the farthest one. This is because the clipping planes
are just that... planes. They can not be bent to take into account that
the planet might be closer in one projection than in another.

The same procedure could be used for arbitrary geometry, but
would require every vertex to be projected, while a sphere is very

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 16

simple by only requiring one projection of the center point. 9 Procedural generation of geometry and
terrain

Procedural generated geometry is a way to describe some instance
without describing it explicitly. It could be some mathematical
function, when used, which would return a description of, say, a
sphere which in turn could be used to build a polygonal model of
the sphere.

The polygonal model is produced when needed run time and not
modeled before and stored. It is therefore only the procedural
method which takes up space and not a model. This comes in handy
when a model would be of considerably size. On the other hand,
generating the procedural model when needed, takes time and bur-
dens the hardware.

An example of procedural generation is seen in the game Spore
from Firaxis [Arts 2006]. In this game procedural generation is
used for many different purposes. They are generating the planets
and their terrain procedurally. For different reasons. They have
ambitions to have many different planets, and storing geometric
representation alone would take up considerably amount of stor-
age. They also want the game world to be new and exciting, so
they rely on procedural methods to accomplish that. They use pro-
cedural methods for building small creatures, and by analyzing the
model of the creature, they are able to animate them by calculating
realistic movement.

9.1 Motivating use of procedural methods

When using procedural methods you will be given various parame-
ters which can be used to influence the outcome of the method. It
is not necessary for the user of the method to know how these pa-
rameters are used in the method, but rather the effect on the terrain.
Parameters could for example be roughness of mountains, cursive-
ness of the shoreline etc. These parameters is also the only way to
influence the terrain generated. This might in some cases not satisfy
the users needs and in section 11 we discus this conflict.

During the last decades rendering hardwares capabilities has
rapidly improved. In computer games we see a transition from sim-
ple restricted indoor scenes to complex and large outdoors scenes.
It is possible to render these complex scene with modern hardware
but it is a tremendous work to design all these scenes. Trying to
shift the workload from designers to computers is one of the goals
of procedural generation.

When using a procedural method for creating terrain for a outdoor
scene, a designer need not to specify the terrain in every detail. In-
stead the designer uses the procedural methods parameters to define
how the terrain should look like on a higher level of abstraction. So
the designer could define how much of the terrain should be some
mountains or to what extend the terrain should consist of fields, and
the procedural method would generate the geometry, textures and
what else would be needed to satisfy the designers wishes. But also
in a random fashion, so that the terrain is varied even though the
designer range of choices is limited.

In theory it is possible to achieve infinite fine resolution for the
given geometry produced by the procedural method. A designer
would have a hard time competing with such a method.

Procedural generating geometry might be useful in conjunction
with LOD also. Using a procedural method to generate geometry
when needed, based on the LOD-scheme, and not generating any
more geometry than needed. This has the advantage of minimizing
the size of the data for geometry.

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 17

Figure 24: Height map and resulting mesh

9.2 An example of procedural generation

Procedural methods are implemented in different ways depending
on what to generate and also depending on performance considera-
tions. Performance comes into question when procedural methods
are used in real time applications and then it has to perform fast as
described later section 9.6. For real time applications it is possible
to generate data in advance. If the procedural method is slow this
could be the solution. On the other hand, datasets could be too large
to be stored or to be processed and then a fast procedural method
which generate data needed on the fly.

An example of how to generate terrain procedurally is described in
the following. One way to represent terrain is using a height map.
This is typically stored as a 2D gray scale image, where the intensity
of each pixel represents the height of the terrain at the given pixels
x and y coordinate. The height map can be transformed into a 3D
mesh representing the geometry of the terrain, as seen in Figure 24,
by interpreting the x,y pixel spacing in the height map as position
in the horizontal plane, while the value stored in a pixel can be seen
as the landscapes height above the horizontal plane.

The procedural method should then generate this height map. A
simple way to do this is simply to find a random value for each
pixel in the height map. This approach wouldn’t produce a terrain
that looks natural. Instead the method needs to be extended. When
calculating a pixels value, its neighboring pixels values could be
taken into account. So, if the neighbors pixel values are at a certain
level, the given pixels value should have a value near this level, with
the exception of an occasional steep cliff side. More things could
be taken into consideration and the procedural method will generate
more realistic landscapes. In section 9.6 through section 9.6.7 more
details on the subject will be given.

9.3 Advantages and disadvantages of procedural
generation

Summarizing the advantages from using procedural methods would
be: It is possible to achieve high resolution for the procedural geom-
etry at lower database size. Predesigned or samples from real world
often has a fixed resolution and growing data size as resolution in-
creases.

Procedural generation shifts the workload from designers to com-
puters and thereby the production time in some cases. But still has
the potential of being controlled by a designer at some higher level.

Procedural geometry can be more varied and therefor more inter-
esting environment to explore.

Procedural generation has its limitations and disadvantages, which
needs to be considered as well. Procedurally generating geome-
try run time will burden the hardware. Procedural methods can be
CPU intensive and demands use of memory as well. Pregenerated

geometry could be optimized for hardware in ways not possible for
procedural generated geometry.

Procedural generated geometry in most cases needs some sort of
LOD-algorithm which complexes the system more. It needs a
LOD-algorithm because the geometry generated, in theory, is rep-
resented at infinite high resolution and therefore would occupy infi-
nite data space unless some LOD-algorithm or bounds on the geom-
etrys resolution.

9.4 Future perspective

How procedural generation will be used and to which extent in the
future depends on many things. One aspect is the possibility for
a designer to interact with the procedural method. The designer
would be interested in being allowed to manipulate the result to
a extend where the designer is deciding on every little detail and
spanning to no control at all. Procedural methods should blend eas-
ily with predesigned geometry like a static mesh of a building in a
procedural terrain or even predesigned area of the terrain like a city
placed at a given point in the terrain. Procedural methods needs to
be optimized for hardware and maybe the future will show uses of
GPU-programming and multicore programming [Ebert 2003].

9.5 Use of procedural generation in this paper

We are using a procedural method for generating landscape for a
planet. This landscape contains different elements which will be
described in section 12. We primarily want to procedurally gener-
ate landscape for testing how it cooperates with the chosen LOD-
algorithm. This could mean how we need to limit the procedural
methods load on hardware, so it runs at a acceptable frame rate.
We also use the procedural method to generate a natural looking
landscape. This could mean a landscape which has elements seen
on the Earth or the Moon for example. Landscape features are de-
scribed in more detail in section 12, but in brief, we want to generate
height values representing a varied terrain containing features such
as mountainous areas, flatland and coastal lines between mainland
and the ocean. Generally speaking, we need a procedural method,
which for some 2D coordinate returns a hight value. Much like de-
scribed in the above example section 9.2, but not storing the height
values in a height map, but generating them when needed.

Instead of generating textures for the terrain we use the GPUs pixel
shader and involve a procedural method for calculating colors. This
could involve considerations like the terrains altitude, steepness,
latitude etc.

9.6 Fractal generation

To generate terrain, clouds , soil type, vegetation etc. you need a
noise function.

A large number of noise functions exist. All of which have their
own strengths and weaknesses and are optimal for their own pur-
poses. We have some rather strict demands for the noise function
in order for it to work well with Level of Detail and a large scale as
an entire planet.

A definition of noise is ”randomness: the quality of lacking any
predictable order or plan”. Other definitions deal with noise as
some unwanted corruption of the clear data. We will use the first
definition, and consider noise as random data which exist on all
scales. You can not zoom far enough into a noise function to make

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 18

it smooth, which you can with all usual functions. Noise and frac-
tals are interchangeable in that way, and for our purpose.

A suitable noise function will satisfy most or all of the following
demands.

Fast It must generate its values quickly. With a large mesh with
many changes, as will be the case with a fast moving camera above
a large planet, the noise function will be called often, and must not
drag the application to a halt.

Work well with LOD Some noise functions are not well suited
for generating local noise, as is needed for the local changes that are
the trademark of a LOD-algorithm. By local we mean to generate
noise values for a specific area without having to deal with the rest
of the noise sample space.

Generate data usable for terrains The noise values should be
readily usable as a height or opacity map. If the data contains too
much high frequency and needs to be smoothed first, then that will
add to the processing time.

9.6.1 Midpoint displacement

Midpoint displacement goes by other names, such as diamond
square and plasma. For our use, the other names, and their slightly
different approaches, are not optimal however, and we will ignore
them from now on. We will consider the algorithm in its pure form,
where you have a line, defined by its two endpoints, and displace
that lines midpoint.

The general rule of thumb is that the magnitude of the detail de-
creases when the scale of the detail decreases. This means that two
points separated horizontally by 100 kilometers can very well have
a height difference of 1 kilometer, while two points separated hori-
zontally by one meter will almost certainly not be offset by that dis-
tance. Exceptions to this are the almost vertical cliff sides, which
does exist in nature, although they are rare. We deal with this in
section 9.6.7.

To abide by the rule of diminishing magnitude of offsets, you scale
the random offset in such a way that the scale is reduced when the
subdivision level is increased as in (11). Others [Polack 2003] have
defined the scaling function differently, but they generally are not
dealing with Level of Detail, so we need it to slightly differently.
In (11) the calculated offset is based on a random number between
+1 and -1. That number is scaled byδ so that aδ of two halves
the offset for each subsequent subdivision level, while a largerδ
flattens out the values faster and a smallerδ keeps the large scale
offsets for smaller detail levels. A value of less than one makes the
offset grow, rather then diminish, which is generally not desirable.
In other words, the terrain is rougher the lower the value ofδ . The
pseudo code in Listing 2 shows how this can be implemented.

o f f set= maxO f f set∗Rand∗δ−subdivisionLevel

(11)
maxOffset, the maximal value for a level
one subdivision
rand, a pseudo random function which re-
turns a value between +1 and -1.
δ , the roughness

Figure 25: One level of midpoint displacement[Polack 2003]

Listing 2: Pseudo code for Midpoint Displacment

1l e t L be a l i s t o f l i n e segments ,
d e f i n i n g t h e t e r r a i n , o r d e r e d by
e r r o r .

2
3l← LHead
4whi le lError > maximal a c c e p t e d e r r o r
5{
6p← lMidpoint
7o f f s e t←maxOf fse t ∗ random (−1 . .+1) ∗

δ lSubdivisionLevel

8p←p+ o f f s e t
9l1 = new l i neSegmen t (lStart , p)
10l2 = new l i neSegmen t (p , lEnd)
11i n s e r t L1 and L2 i n t o L
12l← LHead
13}

Figure 26 to Figure 29 shows a ”terrain” being generated by a few
subdivisions of the originally horizontal line (level zero). At the
first step, the lines midpoint is displaced, as seen in Figure 25. A
random displacement is generated and the line now consists of two
segments. The next step offsets the two midpoints on the new lines,
and so on till level 6 where the terrain consists of 64 line segments
(26 = 64).

Special considerations for a sphere Given the two points, in
3D, A and B, the midpoint M is not located atA+B

2 , and is the case

for a flat world. Rather it is located atA+B
2 (|A|+|B|2 /|A+B

2 |). This
is essentially a matter of scaling the vector from the planets center,
which is located at Origo, to the linear midpoint, so that is gets a
length which is the average of the radius of the two endpoints. If A
is 6000 km from the center and B is 7000 km from the center, then
M is 6500 km from the center, and is located on the line going from
the center through the linear midpoint, as seen on Figure 30

The midpoint displacement conclusion This approach is ide-
ally suited for ROAM section 6, where detail is added to the mesh
by generating a new vertex at the midpoint of an existing line, and
moving that vertex into position, which isexactlyhow Midpoint
Displacement itself adds detail. It seems clear that this algorithm
can very quickly add detail. It also seems clear that it is quite easy
to use it with Level of Detail. If more detail is wanted for a cer-
tain area, then the lines, in that area, are simply subdivided more
than the lines outside the area. When a line is subdivided to pro-
vide more detail, the endpoints are not changes, which is another
required9 attribute of Level of Detail. A problem that Midpoint

9Required by us

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 19

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 26: Midpoint Displacement at level one

1 1.5 2 2.5 3 3.5 4 4.5 5
0. 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 27: Midpoint Displacement at level two

0 2 4 6 8 10 12 14 16 18
0. 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 28: Midpoint Displacement at level four

0 10 20 30 40 50 60 70
0. 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 29: Midpoint Displacement at level six

Figure 30: A different midpoint for spheres

Displacement shares with all but one algorithm10, is its inability to
fit to a vertical line. The steeper the slope, the more subdivisions
is needed. The method can equally well subdivide other ”random”
per vertex values, such as cloud cover, vegetation, roughness.

9.6.2 Fault line

The Fault Line algorithm is inspired by plate tectonics and land-
slides which is responsible for the large scale terrain features on
Earth.

When two plates collide, what usually happens is that one goes
under the other. This is a fault line and along the line the terrain
abruptly rises up or drops down.

The fault line effect can be seen on smaller levels when parts of
a hill or mountain breaks loose and slides downwards as a whole
unbroken piece.

The algorithm is very simple to understand. You start with a terrain
of uniform height. Next you draw a random (straight) line through
the landscape. The part of the landscape on one side of the line is
lowered by some amount and the other side is raised by an equal
amount. This is repeated a number of times after which you have a
landscape as seen on Listing 3. Figure 31, Figure 32 and Figure 33
shows a terrain generated using this method.

A total number of 1024 faults have been used on all the figures.
The first is the result of the raw algorithm, whereas the later two are
the result of the raw algorithm combined with some smoothing. It
is clear that Figure 31 shows a very jagged terrain with flat areas
and intense high frequency11. Figure 31 does in no way look like a
cross section of a naturally occurring landscape.

Figure 31 is better, but still in no way naturally looking. Figure 33
is smoothed heavily and does look better.

One characteristics of a landscape, generated using fault lines, is
that it has flat peaks and valleys due to the combination of verti-
cal and horizontal lines before the smoothing. That can actually
be a desired attribute, since such plateaus do occur naturally. The
smoothing can be thought of as erosion flattening out the landscape

10Fault Line can do this
11The high frequency is evident from the many vertical sides

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 20

Figure 31: Fault line with 1024 faults

Figure 32: Fault line with 1024 faults and average smoothing of
size 100

Figure 33: Fault line with 1024 faults and average smoothing of
size 1000

Listing 3: Pseudo code for fault line algorithm

1l e t M be a mesh d e f i n i n g a l e v e l t e r r a i n
2l e t v be a v e r t e x i n M
3f o r i t e r =0 t o n u m I t e r a t i o n s
4{
5L← new randomLine
6fo reach v e r t e x v i n M
7{
8i f v i s below L
9v . h e i g h t←v . h e i g h t + o f f s e t
10e l s e
11v . h e i g h t←v . he igh t−o f f s e t
12}
13}

The fault line conclusion The fault line algorithm has a back-
ground in nature, which can in some cases make it more realistic
looking. Generally however, it needs a lot of faults to provide the
finer detail, and even then, it needs smoothing. It might be use-
ful, with a very low number of fault lines, in a multi fractal section
9.6.3, where it can provide faults on the large scale, and leave the
finer details for some other function. An even worse problem, that
the required number of fault lines, is that it is unsuitable for use with
level of Detail. When more detail is needed in a specific region, you
will need more fault lines, and you will need fault lines which pass
through that region. There is no apparent easy way to generate just

the right fault lines, and most likely none for real-time applications.
This algorithm represents everything as vertical or horizontal lines.
Any line which is sloped, will therefore be a jagged version of the
true form, and the larger the step-size, the more jagged it is. Un-
like other methods itcan represent the ultimate in high frequency:
a vertical line.

9.6.3 Multi fractals

Multi fractals as defined in [Ebert 2003] are fractals resulting from
the multiplication of two other fractals. We will however use the
term more broadly and consider a combination of two fractals, by
other means than just multiplication, a multi fractal as well.

A multiplication allows one function to scale the other, which in
turn can give a more complex function. A multi fractal is not a
noise function on its own. It is merely a joining of other functions
in such a way as to provide a richer result. Simple addition would
not result in more richness, but simply a terrain with all the vertical
scales doubled on average.

Let F1,andF2 be fractal functions. Interpreting each one as height
values will give a mountain terrain. The combined function ofF1F2
will give a terrain where the functions are sometimes scaled towards
zero and sometimes towards higher values. Where one function
gives a landscape with peaks and valleys, two functions multiplied
gives a landscape with peaks and valleys and sometimes rougher
and sometimes softer terrain. Figure 34 and Figure 35 are such two
fractal functions and Figure 36 is the combined multi fractal. On the
left side ofF3 you see a smoother terrain, due to the multiplication
with the low values ofF2 around that area.

Apart from simple multiplication, one function could provide input
of any kind to the other function. By multiplication we haveF3 =
F1 ∗F2 but as an alternative we could haveF3 = F1(F2) whereF2
provides input forF1. As an exampleF2 could be used to define
the roughness of the terrain generated byF1, if ridges should occur
section 9.6.4, vegetation or something else. This will be described
further in section 14.2

Multi fractals are clearly good for giving some more complexity
to a terrain. They are easy to use together with all other functions,
since they simply scale two or more functions with each other. They
do however require a little more computation, since at least two
ordinary fractals are combined.

9.6.4 Ridged fractals

The inventor of MojoWorld, F. Kenton Musgrave came up with a
very simple and yet very powerful method of making a smooth
noise function look more interesting. The idea is to generate
sharp ridges in the terrain by taking the terrains absolute value
and inverting it, as seen in Figure 37, Figure 38 and Figure 39.
ridgedTerrain(x) = −|smoothTerrain(x)|. Where the smooth ter-
rain gently moves from some positive value to a negative value,
the absolute value of the terrain will move towards zero and then
abruptly change direction and move up towards positive values
again. This results in sharply defined valleys. By then inverting
this function, you change the valleys into mountain ridges, and you
now have a smooth landscape as before, but with a number of sharp
ridges. A ridged terrain from MojoWorld can be seen on Figure 41.

Ridged Midpoint displacement There is a problem with this
simple method however. It is easy to understand and implement for

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 21

0 50 100 150 200 250 300
0. 4

0. 3

0. 2

0. 1

0

0.1

0.2

0.3

0.4

Figure 34: One fractal function generated using midpoint displace-
ment,F1

0 50 100 150 200 250 300
0. 6

0. 5

0. 4

0. 3

0. 2

0. 1

0

0.1

Figure 35: One fractal function generated using midpoint displace-
ment,F2

0 50 100 150 200 250 300
0. 1

0.05

0

0.05

0.1

0.15

Figure 36: One multi fractal function generated by multiplyingF1 and
F2

a pure mathematical landscape function, but for midpoint displace-
ment, it is somewhat more complicated. Consider an edge from a
to b where both a and b are positive values. The midpoint m in be-
tween might be at a negative value. If it is negative, then it should
be made positive to ensure that the function consists of its absolute
values. This moves m up closer to a and b, but without generating
the zero point crossings, that you would ordinarily get. Further re-
finement which generates midpoints between a and m and between
m and b, will be unlikely to go below zero, and the result is a func-
tion which is flattened, but does not have ridges, as can be seen in
Figure 40.

We suggest a simple solution to this problem (which will show its
ugly head again when blending designed and procedurally gener-
ated terrain section 11.2), which is to keep two versions of the
height values. One is the midpoint generated terrain and the other
is the transformed (ridged) data values. The midpoint displacement
will then work in the midpoint data, but the displayed terrain is that
midpoint data passed through the ridge functionf (x) = −| f (x)|.
This will allow us to use midpoint displacement and still generate
ridges. Figure 42 shows the result of separating the midpoint dis-

0 200 400 600 800 1000 1200
1. 5

1

0. 5

0

0.5

1

1.5

2

2.5

3

Figure 37: Ordinary Perlin noise

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

Figure 38: The absolute value of Perlin noise. The valleys are
now sharply defined and no longer rounded

0 200 400 600 800 1000 1200
3

2. 5

2

1. 5

1

0. 5

0

Figure 39: The inverted perling noises absolute value, which
makes the valleys into sharp ridges

0 2 4 6 8 10 12 14 16 18 20

4

2

0

2

4

6

A

B

M

M’

Figure 40: Midpoint displacement not behaving well when imple-
mented as a ridged function. The midpoint M between A and B is
moved up to a positive value, without generating any ridges. The
function is more flat than before.

placement terrain height data and the ridge method.

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 22

Figure 41: A scene showing ridged terrain from MojoWorld

0 50 100 150 200 250 300
0. 5

0. 4

0. 3

0. 2

0. 1

0

0.1

0.2

0.3

0.4

0.5

Figure 42: Midpoint displacement working correctly together with
ridges. The dotted line represents the original data generated by
midpoint displacement, while the solid line is the ridged version.

9.6.5 Perlin Noise

If you an unfamiliar with Perlin noise, see [Perlin 2006] and [Elias
2006]. It would seem strange to most people if ”The Mother of
Noise Functions” Perlin’s noise function is not mentioned. Now it
has been mentioned :-). We will not be using it for terrain genera-
tion. Mainly because it is rather expensive. To obtain the fine details
of less than one meter, and still supply variations on the large scale
of a planet, you would need at least ten octaves. That is ten sum-
mations of interpolated values, which is not something that comes
for free.

You can settle for fewer octaves on the large scale, where the finer
details will not be visible anyway, but when moving closer to the
surface, you will need all the detail. Tricks can be used to not cal-
culate all the interpolations when subdividing, but rather reuse the
data from the level above, but by doing so, the algorithm turns into
a more complicated midpoint displacement, without really giving
anything in return for our trouble. Another trick could be to use
a few number of Perlin Noise octaves and then use midpoint dis-
placement, or some other method, to obtain the finer details.

Interpolation The value of a point between noise values is ob-
tained through interpolation. Any kind of interpolation could be
used, but generally it should be fast, require few sample points and
still be somewhat smooth. Cosine interpolation would be a usable
choice, but linear interpolation can be sufficient and generally much
faster. Figure 43 and Figure 44 show the same noise but with lin-
ear and cosine interpolation. As is evident, though the images are
small, the two methods does not look that different, though the im-
age with linear interpolation has an almost invisible horizontal dis-
continuity along the center line.

Figure 43: Perlin noise used to generate an image. Linear interpo-
lation was used

Figure 44: Perlin noise used to generate an image. Cosine interpo-
lation was used

This is a subject on its own and we refer to [Perlin 2006] and [Elias

9 PROCEDURAL GENERATION OF GEOMETRY AND TERRAIN 23

2006] for further details.

Normal vectors The normal vectors for a Perlin noise function
is obtained by partial differentiation of the interpolant function. We
have selected to use cosine interpolation

Another problem is that when using Perlins noise function with
more dimensions, it becomes increasingly expensive. The function
is for a n dimensional spaceO(2n). It takes2n noise calculations
and2n−1 interpolations.

9.6.6 Coordinate system

For a planar world you need to calculate noise in two dimensions.
A suitable coordinate system is easily found. For a 3D space, you
need three dimensions, and that is straight forward. A 2D world
which is wrapped around in the third dimension till it connects with
itself is not so straight forward.

You could chose to still consider it a limited planar world, and use
2D coordinates. When you move along one dimension, the position
increases until you meet the edge and start over. This is easy, but
has the problem that you get a discontinuity at the edge.

Instead, you could use polar coordinates, and we do on Earth, and
you would not get the edge discontinuities, since there is no edge
as such. Polar coordinates present another problem however, at the
poles you will see pinching, which looks like a texture edge, if a
texture is used, is squeezed together into a point. This is because
a change in longitude will mean less and less to the position as the
longitude approaches the poles. At the poles, you have all longi-
tudes present at once. The pinching makes polar coordinates less
than optimal as well.

The third method is to consider the world a surface in 3D, which is
actually is. This way there is no discontinuities, since the surface
is no longer a 2D plane bent over the third dimension, but rather
a 3D surface in a 3D space. It doesn’t have the deficiencies of the
other two methods, it is more ”correct” and it can make some 3D
calculations, in error estimation, easier to perform. It has one set
back though - is more costly to calculate noise in 3D than in 2D.
This is the coordinate system we chose to use.

Calculating the noise in 3D for a spherical planet reduces to calcu-
lating the noise on the surface of the sphere. We define a solid noise
function [Ebert 2003] and calculate its values where it intersects the
sphere.

9.6.7 The noise conclusion

We will be using midpoint Displacement , combined with Fault
Line, as a Multi Fractal. Fault Line on its own can not provide the
finer details that we desire, and Midpoint Displacement can look
a little ”unnatural” because the entire mesh is somewhat homoge-
neous without the few sharp defining edges that you see in nature.

As stated previously, Fault Line and Level of Detail are not well
suited for each other, but if you consider a few fault lines, which
are all pre calculated by some pseudo random algorithm, or defined
by a designer, and join them in a multi fractal with another method
which is LOD capable, then the faults can bring some extra dynam-
ics into the terrain. It will almost exclusively be visible on the large
scale, but it comes at a low cost.

Where midpoint Displacement can not represent vertical lines, and
performs badly when dealing with very steep slopes, the Fault Line

algorithm is well suited for just that. The combination will be an
algorithm which can handle slopes well, but can also easily rep-
resent sudden changes in terrain; that being height or some other
attributes.

9.7 Not so random randomness

During the description of midpoint displacement section 9.6 we
merely stated that we used some (scaled) random number displace
with. A true random number is not usable however. We need the
exact same terrain to be generated each time LOD decides that it
should come into existence. It is somewhat unrealistic if you go left
around a mountain and see a valley, but when you return to your
starting point and this time go right around the mountain, you see
a large plain or something else, which is not the valley, you saw
the last time. To avoid this effect, we will need to generate random
lookingvalues, which are actually very deterministic.

The above mentioned randomness problem is not relevant formost
users procedural terrain generation techniques, since they are gen-
erally used in a top down fashion, where you generate the entire
dataset (terrain, color patters or something else) once and for all.
Then perhaps LOD is used to simplify the data, but they do not
generate, destroy and regenerate data for a given region, as we do
it.

9.7.1 Randomness from hashing

To obtain the deterministic pseudo random number used in
displacement, we need a function H(x,y,z) which guaran-
tees that H(x1,y1,z1) = H(x2,y2,z2) if x1 = x2, y1 = y2
and z1 = z2. Further more it should generate a ran-
dom sequence for[H(x1,y1,z1),H(x2,y2,z2), ...,H(xn,yn,zn)] even
thoughx1..n,y1..n,z1..n are strongly correlated.

Any good hash function will satisfy the above requirements. An ex-
tra requirement we must introduce is that the function should have a
small memory footprint and should be able to execute quite quickly.
Further more, it should be seedable, so that the same function can
be initialized with a different seed and then generate a different hash
value for the same input.

Hashing with lookup tables One of the easiest, and yet power-
ful, methods of hashing values is to use pre generated permutation
tables and do a sequence of permutations and lookups. A problem
with this method is that the hash is cyclic, so thatH(a) = H(b+δ)
thougha 6= b+ δ for someδ . δ is the functions period, and after
δ sequential hashes, the function repeats. The result of repeating
hash values is that the terrain tiles and has visible patterns. The
goal is then to maximizeδ without incurring to high a penalty in
computational cost and memory usage.

The permutation scheme is illustrated in Listing 4. The permu-
tation table contains random numbers generated with an ordinary
pseudo random number generator. It can be random numbers or a
sequence of numbers in random order. When using a tableP1 to
index into another tableP2, thenP1 should contain values from 0
to length(P2)− 1 in a random order. If a table size of 8 bit (256
entries) is used and the resulting hash should be a 32 bit value, then
four tables of 256 could be used and the results can later be shifted
and or’ed together like in (12), whereHn

9 denotes the n’th 8 bit hash
function. Should the a 32 bit floating point in the interval -1..+1,

then a simple scaling can be used(H32(x)
(232−1− 1

2)∗2

10 ARE LANDSCAPES REALLY FRACTAL? 24

H32(x) = H1
8(x) << 24|H2

8(x) << 16|H3
8(x) << 8|H4

8(x) (12)

The function is deliberately constructed to have a very short period,
in order to demonstrate the problem. In the code, it is obvious that
P[xmod5] = P[(x+ 5n)mod5] for any n, which gives the function
a δ = 5 for x. The same is the case for y and z. Longer periods
can easily be generated by making P larger, but that takes up more
memory which in turn can push the table out of the cache and make
the function much slower. If the space, we want to hash coordinates
in, has a size of 20 000 by 20 000 by 20 000 kilometers and we
need different hash values for positions one meter apart, then the
table should have a length of at least 20 000 000. Certainly more
than we can fit into the cache.

Listing 4: Hashing with permutation tables

1P i s a t a b l e o f 5 random numbers
2f u n c t i o n hash H(x , y , z)
3a←P [x mod 5]
4b←P [(a+y) mod 5]
5hash←P [(b+z) mod 5]

Long-period hash functions The paper [Lagae and Dutré 2006]
describes a very simple, and intuitively easily understandable,
method to generate much longer periods.

The principal idea is that by adding together two hash functions
with periodδ1 andδ2 you will have a resulting function with period
δ1 ∗δ2

It is easily verified with a simple example.

Given two ”hash functions”H1 andH2 whereH1(0..1) = [1,0] and
H2(0..2) = [0,2,1], you haveδ1 = 2 andδ2 = 3. A sequence of
numbers n=0..20 will hash into the following table

0 1 2 3 4 5 6 7 8
H(n) 1 0 1 0 1 0 1 0 1
H(n) 0 2 1 0 2 1 0 2 1

(H1(n)+H2(n))%3 1 2 2 0 0 1 1 2 2

It is evident thatH1 andH1 have extremely short periods of 2 and 3,
while the period ofH3 is 6 - the multiple of the other two. For this to
work optimally it is required thatδ1 andδ2 are prime to each other,
and that they are close to each other as well. If they are factors of
each other, then the combined period will not be maximized, but
rather be the maximum ofδ1 andδ2. If they are not close to each
other, then the period can be n times the longest period, where n is
less than the shortest period. As an example take two functions with
period 150 and 100. They are prime to each other, but the combined
hash has a period of only 300, after which the sequence is repeated,
since 150*2=100*3=300.

In [Lagae and Dutŕe 2006] it is mentioned that the period lengths
should be relative prime and close, but the actual obtained com-
bined period length is not defined. It is clear, however, that
lcm(δ1,δ2) defines that period length, since this is the period af-
ter which both periods are restarting. By keeping the period lengths
close (relative to their lengths), you ensure thatlcm(δ1,δ2) = δ1δ2.
The easiest way to pick good lengths, is to simply select neighbor
primes as period lengths. This is done at initialization, so there
is no real-time overhead from calculating primes, if that was even
considered expensive.

The conclusion is that two short-period hash functions can be com-
bined into a long-period hash function, with a period ofδ1δ2, by
adding them together,if and only if δ1 andδ2 are prime to each
other and close.

10 Are landscapes really fractal?

One of the properties of fractals is ”self similarity”. This means that
the fractal looks the same at all scales. Given an image of a fractal,
you can not determine at what scale it is seen. This is said to be true
for landscapes as well. A mountain has smaller mountains on it,
which have still smaller mountains and so on. While this may seem
true at first, you should soon realize that a mountain on the large
scale is very different from a small segment of the same mountain.
A real mountain needs to have a certain base in order to grow to
a certain altitude. For smaller rocks, that base does not need to be
the same size. A large mountain can only have overhangs up to a
certain size before they break off, while smaller rock formations are
more solid. The roughness is not the same on all scales either. The
same observations goes for the other ”fractals” in nature. they are
not the same on all scales.

An example of where one could get into trouble is the midpoint
displacement algorithm section 9.6.1. It common to use a scaling
of 1

2 for each subdivision. If we offset by a maximum of M at the
first displacement, then we offset by up to1

2M the next step and then
0.25M and so on. If we have a planet where we want the maximal
offset to be 10km, then that is M=10 000m. If the line segments
are 10 000km long at the first step of the algorithm, then we have
M=5.000m when the lines are 5.000km. This way our M will be
1m when the line segments are 1km. This translates into a very flat
terrain. Over a distance of one kilometer it will not move more than
1 m up or down. Nowhere on Earth, except perhaps on Artica, will
you ever see terrain like this.

The alternative could be to scale by something other than1
2 , but that

would not be right either. On the small scale1
2 could be just right. If

the terrain can be displaced 10m over 100m, then 5m over 50m still
sounds reasonable. It becomes 1cm over 10cm, which now perhaps
again is a little too flat.

The point is that since the terrain is not the same on all scales, then
neither should the fractal function be. We have introduced various
methods to give the landscape some more dynamics section 9.6, but
neither deal with the differences based on scale.

The result of this is that a fractal method need something extra to
make it generate good landscapes. That something extra could be a
more complex scaling or perhaps utilization of the fault line method
or pregenerated mountain ranges.

11 Design and procedural generation

When using a procedural method to generate terrain, you are at the
same time aiding the designer by letting a computer do some of
the time consuming and boring work, but you are also taking away
some control from the designer on how the final result should look.
Solving this conflict is not easy, but we discuss a possible solution
to part of the conflict in the following.

Ideally, a designer would wish for the maximum range of possible
control over the generation of terrain.

11 DESIGN AND PROCEDURAL GENERATION 25

The designer could wish to explicit define how every little detail in
a terrain should look. The reasons for this are many. Maybe the
designer wants to model a precise copy of a scene from real life.
Maybe the terrain should have a overall layout that accommodate
the game play in the best way. Placing static meshes, like buildings,
in the terrain might lead the designer to want to take control over
the terrain at the given position.

On the other end of the scale the designer would not wish to get
involved in the generation of terrain. The resources to be used on
designing the terrain could be used elsewhere. Or maybe the proce-
dural generation satisfies the needs for terrain. Letting the computer
generate terrain procedurally might even produce surprising results
which designer wouldn’t think of on their own. Thinking outside
box might produce new ideas leading to development of new solu-
tions.

Somewhere in between the designer might want to control the gen-
eral look of the generated terrain. For this, the parameters for the
procedural method might be suitable as mentioned earlier in section
9. These controls could even combined in a way which gives the
designer a intuitive tool to manipulate the procedural generation,
not by modifying the parameters used in the procedural method,
but at a higher abstraction layer. Predesigned worlds is an old
topic which has been widely used to make computer games and
3D-representations of a real environment, which has been sampled.
Purely procedurally generated worlds have been around for quite
some time as well. Having predesigned worlds with a limited reso-
lution, and then filling in fractal noise for that extra detail has also
been done before. What is more of a new subject is how to blend
design and procedural generation seamlessly.

It is often desirable to be able to generate a procedural world, which
can be huge and still possess rich details, and still be able to define
specific landscape features at certain areas, and to do that with ab-
solute control, beyond simply raising and lowering the terrain.

Merging design into the world We first introduce the concept
with 1D examples before dealing with 2D and how to project the
design into the world.

Given a noise function n(x) and a designer generated function (or
rather samples of the function) d(x), we seek to generate a seamless
blend of the two. A rather obvious way to do this is to scale them
and sum them together. With a scaling function s(x) in the interval
0..1, we could do as simple as (13).

blend(x) = n(x)∗ (1−s(x))+d(x)∗s(x) (13)

Figure 48 shows the result of blending a noise function with a pre-
defined triangular shape, with a cut-off cosine blending function.
Where the scale is near 1, the triangle is dominant, while it fades
away when the scaling is near 0.

11.1 The blending function

Generally you will want your designed terrain to be represented per-
fectly in the final rendering, without any alterations. You will also
want to leave the terrain, far away from your designed area, entirely
up to the procedural generation. The area near the design, but not
in the important part of the design, should be a blend between the
procedurally generated and the designed.

A square blending function with the value 1 over the design, and 0
outside, will let the design show without errors, but the edge will be

600 400 200 0 200 400 600
1. 5

1

0. 5

0

0.5

1

1.5

2

2.5

Figure 45: Noise function,n(x)

600 400 200 0 200 400 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 46: Designed function, or rather predefined samples in x,d(x)

600 400 200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 47: Scaling function,s(x)

600 400 200 0 200 400 600
2

1

0

1

2

3

4

5

Figure 48: Sum of scaled functions,n(x)(1−s(x)+d(x)s(x)

11 DESIGN AND PROCEDURAL GENERATION 26

clearly visible, while a cosine blending function, as shown previ-
ously, makes a smooth transition, but also does not enforce the de-
sign. A reasonable compromise would be a trapezoid shaped func-
tion with a smooth ramp on the edges. Figure 49 shows these three
methods. It is evident that the square function is too simplistic, but
the choice between the smooth and the trapezoid is very much de-
pendent on what the designer wants. It will therefore generally be
the better choice to let the designer select both the design function
as well as the blend function. Perhaps a very smooth transition is
more important than absolute representation of the design. Figure
49 shows blending with a square, a cosine and a trapezoid shaped
blend function.

Raw terrain Designed terrain

Square blend function

Cosine blend function

Trapez blend function

Figure 49: Blending performed with three types of blend func-
tionsw

Optimal blending function There is no such function. Gener-
ally one will want a central area where the design has absolute dom-
inance and around that a slow blend into the surrounding terrain,
but sometimes one might want the design to appear more eroded
and rough, in which case it should not be so dominant, but rather
let the fractal function work on it. The only sensible thing to do is
to let a design consist of the design itself and blending data as well.
Then the designer can chose the best method.

11.2 Midpoint displacement and design blending

When using midpoint displacement, you do generally not have a
mathematical function representing the terrain. Rather you have a
large number of random offsets of the midpoints. You can therefore
not just define functions and scale and sum, as shown previously.
Instead you need to generate a new midpoint displaced point and
then blend that with the designed/sampled function at that exact
location.

The method is still simple. You locate the midpoint of the edge
to be refined. The the midpoint is displaced in a pseudo random
way as explained in section 9.6.1. This gives you the point M with
position x,y. Next you look at the design functiond(x) and the

600 400 200 0 200 400 600
4

3

2

1

0

1

2

3

4

5

Figure 50: Midpoint displaced values in red, design in green and
combination in blue

blend functions(x) and blend the displaced midpoint with the pre-
designed value as in (14). This new value ofMy is then used as the
true blended noise and design value, as seen in Figure 50.

My(x) = d(x)∗ (1−s(x)+My ∗s(x) (14)

When using midpoint displacement rather than pure mathematical
functions, the pre-designed data will generally influence a larger
area than what you would expect. If an edge starts outside the de-
sign area but ends inside the designed data, then even though its
midpoint might be outside the design area, it can still be pulled up
or down based on the endpoint whichis inside the designed area.

The larger region of influence can be a desirable feature, and gen-
erally is, because it ensures that the design blends very well with
the procedurally generated landscape. It can also become too un-
controllable however. A reasonable alternative is to generate the
terrain with midpoint displacement, while ignoring the design en-
tirely, and first introduce design when the data is to be written into
the graphics card. Just then, we can blend the terrain with design.
This ensures that the design does not inadvertently influence terrain
outside its designated area. It does have some drawbacks though.
Mainly we can not optimize the mesh subdivision to take the design
into account. The design might make abrupt changes in the terrain
without ROAM being able to take those changes, and the following
pixel errors, into account because those changes does not exist be-
fore the terrain is done being optimized. Secondly, the design will
be less integrated into the whole planet, than what it could be with
blending from the get go.

11.3 2D area design

Until now we have been dealing with an abstract form of blending
in 1D. Most of the concepts can be carried directly over to 2D,
which is what our planets surface is, but some need an little extra
work. Mainly we need at method to position design on the planet,
so that we get a one to one relationship between a position on the
planet surface and a sample point in the design.

The data values for design and blending will be contained in a 2D
structure. This can be a bitmap or a raw array of data. This is
really a matter of which is more convenient. For a designer a bitmap
will be an easy place to draw and store a height map, while on the
other hand actual measurements from the real world, will often be
stored in a more raw format. We have tested with both home drawn
bitmaps and real world data downloaded from

11 DESIGN AND PROCEDURAL GENERATION 27

Figure 51: Design space and it projection to a sphere

http://seamless.usgs.gov/website/seamless/viewer.php

11.3.1 Design space

In order to position and scale the design in the 3D world, we define a
design space, as seen on Figure 51, with its own coordinate system.
The X- and Z-axis are considered ”right” and ”up” in the design.
The design data is located in the XZ-plane and the Y-axis is going
up from this plane. All three axis are unit length and the x- and
z-axis correspond to the data in such a way that -1,-1 is the first
element in an array of data, while 1,1 is the last. The choice of
scaling is arbitrary.

A design is placed in the 3D world by selecting a position for it
as well as an orientation. The design then influences the terrain
directly below it, but only to a certain depth, which is selected to be
the spheres radius. This is to ensure that the design can be placed in
such a way that it only influences one side of the sphere, and does
not design its way all the way to the opposite side.

11.3.2 Sampling

When a 3D position is generated on the sphere, the design is asked
if it has any influence at that position. This is done simply by pro-
jecting the 3D position into design space and testing its X- Y- and
Z-coordinates. If X or Z are less than -1 or greater than 1, then the
position is outside the designs area of influence. If the Y value is
less that the defined threshold, then the point is also considered out
of the design area.

If, on the other hand, the point is inside the design, then the de-
sign and blending data is sampled by converting the coordinate into
array coordinates. The design will rarely have the exact same res-
olution as the points being designed, so some form of re-sampling
must be used. We have opted for bilinear interpolation where the
four closest values are being used to calculate a weighted average.
Point sampling, where only the closest value is used, will give arti-
facts whenever the terrain mesh is finer than the design, as seen in
Figure 52. The resulting mesh will then appear blocky, as it hap-
pens for images. Bicubic filtering uses the 16 nearest values and
is generally considered better, but it is more time consuming, and

Figure 52: Closeup of blocks caused by pointsampling. The colors
are defined to be the normal vectors to better show the form of the
mesh

we will settle for a simpler method now. The only real requirement
is that some form of interpolation should be used, so that we avoid
blocks, which bilinear lets us do, as seen in Figure 53.

On Figure 54 a sample point is located near the center of the grid.
it does not land exactly on any of the values in the grid, but it is
closest to 4,3,8 and 4. Had point sampling been used, the result-
ing sample value would have been 3, since this is the closest value.
With bilinear sampling, we first interpolate between 4 and 8 as well
as between 3 and 4. The resulting values are approximately 5 and
3,3. Next we interpolate between those two values and get approx-
imately 3,6. The value 3,6 is the final result. The interpolation is
linear, as implied by the name bilinear.

11.3.3 Blending

Whenever a pixel is in the area controlled by the design, we need
two values from the design. We need the actual design value and
we need the blending factor, which is a number in the interval 0 to
1. Given those two values and the fractal value generated for the
given vertex, we simply blend them and arrive at some mix, which
is hopefully exactly what we were looking for.

Scaling the blending factor can provide very different end results.
A meteor crater is defined by a design as seen in Figure 55 and
then places in the world. Figure 56 and Figure 57 shows the design
with three different levels of blending. The top images is the design
blended very hard, so that it is absolute where it is defined. The
second image is the design blended more softly, so that the random
terrain underneath has more influence. The last image is a very very
faint design, which is not even visible. It is what the terrain looks
like if it is not touched by design.

Another example of a more distinct design is shown in Figure 58
which is clearly not naturally looking. Even though it is such a
”hard” design, it can be blended with a terrain to make it become
one whole. In Figure 59 the design is blended in way which lets
it stand out very clearly, while it is more faded in Figure 60. The
faded blend resembles an eroded version of the test design.

11 DESIGN AND PROCEDURAL GENERATION 28

Figure 53: Closeup of bilinear sampling showing no blocks. The
colors are defined to be the normal vectors to better show the form
of the mesh

Figure 54: The bilinear resampling

Figure 55: A very rudimentary design for a meteor crater containing
only the outer rim and the central point

11.4 Design and visibility

As mentioned earlier, in the section about bounding spheres section
7, a triangle should be contained inside a bounding sphere, from
which none of its child triangles will ever escape. If a triangle can
be subdivided in such a way that one of its children is outside the
initial bounding sphere, then visibility testing will fail.

This can be a problem when dealing with design, since we have no
upper limit on the distance the design can offset any given triangle.
It can very well move a triangle outside its parents bounding sphere.
This will cause the design to vanish from view when only the design
itself is in the view frustum, and the triangles which are influenced
by the design are not.

Figure 61 shows an example of this. From the viewpoint, the red
design can be seen, while the rough terrain below can not. None of
the bounding spheres are in view, so the rough terrain does not get
refined, since it is not in view, and none of its child triangles will
ever be. section 7 shows why this is certain. If however the terrain
was refined, then the terrain would kick in and offset it enough for
it to come into view. This is a situation where we should see the
red mountain, but we do not. This is obviously caused by child
triangles, of the rough terrain, being offset outside the bounding
sphere. Something which we have previously stated that we can
not allow. When dealing with design, it is next to impossible to
prevent without seriously constraining the designer.

We see two solutions to the problem.

Expand the bounding sphere A triangle which realizes that it
is entirely or partly inside a design area could expand its bounding
sphere. It is difficult for it to know how much is enough, without
sampling for all design for design and blend values. A design could
in theory offset child triangles any distance, and we wouldn’t know
before it happened. If a design knows what its maximal offset might
be, then we could still expand the sphere for triangles influenced
by design. A design could inform us about its lowest and highest
values and we could then expand the bounding sphere out at least
that far. It would probably be too much, and the triangle would be
considered in plain view - and be refined - too often, but we would
be rid of the artifacts.

Always refine the designed geometry Whenever a triangle is
touched by design, it could be split. This would go on till some pre-
defined level was reached. It would mean that even when the rough
mesh is not visible, as in Figure 61, the mesh would be refined, and
the designed mesh would come into view. The risk we run with this
method, is that perhaps the rough mesh was not refined just enough.

11 DESIGN AND PROCEDURAL GENERATION 29

Figure 56: A crater blended into a terrain at three different levels.
From top to bottom the blend is 1.0 0.5 and 0.1w

Figure 57: A crater blended into a terrain at three different levels.
From top to bottom the blend is 1.0 0.5 and 0.1w

11 DESIGN AND PROCEDURAL GENERATION 30

Figure 58: Manually generated height map used as designw

Figure 59: Design merged with noise, using the smooth blend func-
tion. It is apparent that the resulting landscape is never entirely
equal to the design, though it is very close around the center, where
the blend function gives heigh weight to the designw

Figure 60: Design merged with noise, using the blend function with
a central area totally dominated by the design. You can clearly see
that the E and S are not influenced by the noise function, but are
entirely defined by the designw

This will in most cases not be a problem, if we refine just a few ex-
tra steps down below what we would else do. This is because that
even user defined landscapes, defined through design, should be-
have relatively relaxed. When we generate some of the designed
geometry, then it will get its own bounding triangles, which tells
us when the triangles are in view of not. Ifthosebounding spheres

Figure 61: Design should be visible, but the triangles, which are to
be transformed into the design, are not

are not broken by subsequent child triangles, as the previous ones
were, then we are back in the game, and we will again refine what
is visible. Figure 62 shows an example of this. The rough mesh is
not in view, and therefore should not be refined. We do however
refine at least one step now since the design area is influencing us.
With the next subdivision we get the flat top red mountain. That
mountain is still not in view,but its bounding sphere tells us that
some of its children might be. Now we again refine, as we would
always do, and the blue mountain peak shows up in the view field.

We opt for the refinement-ahead-of-time method, since it very easy
to implement, and will not break. It will require a few subdivi-
sions ahead of time, but not a lot, and the method of the expanding
bounding sphere will, with a huge expanded bounding sphere, also
be subdivided much more than it would else.

11.5 Blending in the vertex shader

The blend operation, we have described previously, would fit well
in a vertex shader. The vertices arrive at the shader with the posi-
tion they acquired from out fractal method, and next we blend that
position them with some design and forward them with the new
position. That is easy and it is fast. There is a problem though.

If the terrain is first blended with the design after we are actually
trying to render it, then we have no way of optimizing the ROAM so
it takes the design into account. Perhaps the design is very complex,
and we need many triangles to represent it properly, but we can not
realize this before the vertices arrive at the shader, and then it is too
late.

Also note that you would need a vertex shader 3.0 or higher to do
texture lookups in the vertex shader itself. Without that function-
ality, it would be difficult to do the design blending at all on the
GPU.

Though the vertex shader seems like a natural place for blending,
we can not use it well for our kind of terrain. If we used a mesh
which was not taking terrain details into account when optimizing,
then it would work well to define the terrain in a texture and project
it onto the terrain. The texture coordinates would not even be a

11 DESIGN AND PROCEDURAL GENERATION 31

Figure 62: Design is becoming visible when we do an extra subdi-
vision. Note that this is not the same terrain as in Figure 61

problem when doing a projection. It would in fact be very much
like that we are doing now, only on the CPU.

11.6 Distortion from projection

When a design is projected onto a planar surface, along the surfaces
normal vector, then the projection is perfect. When it is projected
onto a sphere, then it can be anythingbutperfect. As seen in Figure
63 a design will be stretched out when the angle of ”impact” is very
low. While a and B in the design are equal in size, their projections
onto the planet, A’ and B’ are far from equal. This happens on steep
mountainsides as well.

It can be used to create special effects, such as elongated meteor
craters, and it can distort a design, if the design space is very large
or if it is placed in a way that makes it project in a shallow angle.
The solution to this ”problem” is generally to not make that large
designs and to not let them project along a vector very different
from the general normal vector at the center of the target area.

11.7 Interactive real-time design

The design previously described is all done off-line before the ac-
tual visualization is started. Another form of design is done real-
time by user agents inside the virtual world. The question one need
to ask one self is, what do we do if this user agent in the virtual
world drops a large bomb on that patch of grass?

Older computer games did nothing much really. An explosion was
shown, but then the smoke cleared, the terrain was as before. Newer
games draw a decal (extra detail texture showing some effect, such
as bullet holes or scorch marks and tire tracks) on the terrain to
show the result earth. The only game, that we know of, where the
terrain is actually altered and the is a large hole afterwards, is the
eighties game Red Fraction, where some, but not all terrain, could
be destroyed.

We propose a method which will allow user agents to actually affect
the world they exist in. Letting the terrain be altered is very easy.
A mesh exists and it can be modified. That would however mean

Figure 63: Design can be distorted when angle of ”impact” is very
low

that the terrain returns to normal if we leave the area and return a
while later, since the mesh is constantly being transformed by the
ROAM-algorithm. What we want is to be able to blow a hole in
the ground and go away and let some other user agent arrive at the
scene and see the exact same hole. The effects should be persistent.
We see two general ways of achieving this goal.

Real-time generation of ordinary design When a bomb goes
off on the surface, we can dynamically calculate a design which
will look like a bomb crater when projected unto the site of the
explosion. First we need to make some procedural algorithm for
generating bomb crater designs. Next we have to blend it just like
any other design. This means that we need to have design generat-
ing methods for all the things a user agent can do to the landscape,
which is not unreasonable. If we have not considered what happens
when a nuclear explosion touches the landscape, then we can sim-
ply not let the users use those devices. If however we have decided
on the effect from a falling meteorite, then that can happen.

Real-time recreation of the action Rather that generating a
design and imposing it on the landscape, we could remember the
action and recreate it whenever that part of the landscape comes
into existence again. If a user agent drops a certain kind of bomb
at a certain location and create a certain feature in the landscape,
we could simply remember that kind of bomb was dropped at that
position. When the landscape is later observed by a user agent, we
”drop the bomb” again before showing the landscape. This will
only require us to store very few details about the event, but it will
require the effect to be recalculated whenever the terrain is recalcu-
lated. It will even have the action replay whenever the bomb crater
is refined, when a user agent moves in closer.

Memory? What memory? If the world have to remember all
effects from the start of time till the end of time, then it can be a
tough job keeping room for it all. The question is really how long
an effect lasts. We have craters from meteorites that ”landed” many
million years ago, but we do not have ordinary bomb craters which

12 LANDSCAPE FEATURES 32

are more than a few years old. It seems reasonable to let actions
fade out over a period of time. The more significant, the longer
they last. The question is then how long is long enough. As so
often before the answer is ”it depends”. If the system running the
virtual world has plenty of resources then they can last a long time.
If only few actions are executed, then they can be remembered a
long time. If not, then they should fade quickly.

12 Landscape features

In this section we describe some of the characteristic landscape fea-
tures. These features are common for the Earth and for other planets
as well. The following landscape features are of the larger scale and
influencing terrain represented both at low and higher resolution.

To generate a realistic looking terrain the following landscape fea-
tures are of considerably importance.

• Dry land

• Oceans and lakes

• River systems and lakes

• Mountain ranges

• Vegetation

• Wild life

• Civilization

• Atmosphere

• Shadows

• And as a consequence of the above, erosion

• Meteor crates

In the following sections, we will describe these landscape features
in more detail and discuss how they can become a part of computer
generated terrain.

12.1 Dry land

On Earth (and on other rock planets) on a macroscopic scale, con-
tinents of different sizes and shapes are the most conspicuous land-
scape feature. Larger continents have recognizable forms which
allows us distinguish them from each other. Continents are a result
of the underlying dynamics of tectonic plates, moving and altering
the shapes of continents.

On a slightly smaller scale another predominant landscape feature
are mountains. They are also a result of plate tectonics, resulting in
mountain ranges where plates converges or diverges. Also volcanic
activity results in volcanic mountains or even small islands.

The main land often consists of characteristic landscape as moun-
tains, plains, plateaus, coastal areas etc. These landscape types typ-
ically occupies a coherent area due to geology and external factors
like climate or erosion.

When creating a natural looking terrain taking these features into
consideration would be advisable.

12.2 Oceans and lakes

70% of the Earth surface is covered by water, most of it being
oceans. Oceans are largely homogeneous surfaces, maybe varying
little in color. The water is covering land that is generally formed
as described above but with some exceptions like erosion.

Where land emerges from the sea we have a pronounced landscape
feature. Here the surface of the water and the land can be close to
parallel and as will described later, this could cause visual artifacts
when rendering if not handled correctly as described in detail in
section 16.

12 LANDSCAPE FEATURES 33

Oceans could be represented by a simple spheric surface with a
more or less constant radius. In this way, water will show where
the land has a height which that is below the level of the spheric
water surface. If one is to dive into the ocean, there is land under
the ocean as well, since land and ocean surface are separate objects.
The problem with this is that the ocean is world wide at altitude 0.
No land can exist at a lower altitude, though there are areas on Earth
below sea level. Lakes can exist at higher altitudes and need special
consideration, which will be described in the river section.

Water could also be represented simply by coloring pixels below a
certain height, blue, but one has to be careful if not shading per pixel
as artifacts know as leaking might occur. This is when a triangle
has a vertex under water and one above. If the submerged vertex
is colored blue and the one above water is colored green, then the
blue and green will blend into each other along the edge, generating
a smooth color gradient rather than a sharp change from blue to
green when the edge breaks the water surface.

12.3 River systems

River systems and their effect on the terrain are significant for com-
puter generated terrains. Where and how rivers flow are a result of
the shape of the terrain, running from higher to lower ground. But
the flow of the water also alters the shape of the terrain. This can
be seen when rivers are carving their way down in mountains and
where the rivers run into the ocean, slowing down and releasing
sediment at the coast.

In the late 1980’s fractal terrains where lacking of river system,
which made the terrains less believable. Efforts where made to
solve this lack of reality. Two different approaches to solve the
problem was developed shortly after one another. These two ap-
proaches are sometimes called bottom up and top down and de-
scribed briefly in the following.

In 1988 F. K. Musgrave, C. E.Kolb and R. S. Mace, [Kelley et al.
1988], presented their solution on how to incorporate river systems
in computer generated terrain. They took on a bottom up approach
where a river system was created first and then generation a fractal
terrain on top of this river system.

A year later, 1989, F. K. Musgrave, C. E.Kolb and R. S. Mace,
[Musgrave et al. 1989], presented an alternative solution, a top
down approach, where a fractal terrain was generated first and next
a simulation of water flowing down this terrain and eroding it.

None of them are exactly representing what has happened on Earth
(or any other planet), but the end result are close to what is seen in
real life.

Some effort has been made to create solutions where erosion
from water on terrain could be calculated real time. In 1993
[Prusinkiewicz and Hammel 1993] P. Prusinkiewicz and M. Ham-
mel describes yet another way of generation terrain with river sys-
tem. They introduce a method where generating mountains and
rivers happens simultaneous which one could argue is closer to a
natural process, because of a closer relation between terrain and
river system.

Characteristic for the above methods are, that the terrain and river
systems are precalculated through an expensive process that in-
volves the entire terrain at once. We are trying to avoid this. Also
river systems needs proper care when using a LOD algorithm as
discussed in section 12.3.

We first looked into using predefined paths for the rivers and a 1D
profile to represent a cross section of a river bed. That had some

serious problems and we looked for another solution, which is ac-
tually quite realistic in how it works.

12.3.1 1D path following profile

An obvious extension to our design method was 1D profiles which
could be dragged through the landscape along a predefined path.
That way rivers could be carved into the terrain to give it a more
realistic appearance. The method is simple, and powerful for many
purposes, but rivers are not well suited for it.

The problem is that though a river does form the landscape, as it
would with this method, the river also has to abide by some rules.
The primary one being that it flows downwards. This can easily
enough be implemented by starting it at some height and letting
the path go deeper and deeper until sea level is reached. While
testing this, we had some undesirable effects. If the rivers path was
defined to fall y meters for every x meters traveled horizontally,
but the terrain dropped by more than x/y then the river could end
up hanging in midair and it was suddenly more an aqueduct than a
river.

A simple solution would be to let the river path drop by max(terrain
drop, y/x), so if the terrain dropped faster than the profile, then the
river would follow along. This works better, but rivers not only
flow downwards, they also flow around obstacles, whenever possi-
ble. The profile and path method would now carve its way straight
through all obstacles without so much as flinching. Sometimes
rivers do carve their way through mountains, but not if there is a
perfectly good way around it.

The last problem is river basins. With a profile method, they would
be missing. The river would always just flow right along like a canal
and never widen to fill nearby lower regions.

A river transforms the landscape, but the landscape transforms the
river. For that to happen, a feedback loop must be used, and that is
certainly not happening with the design method, and it is generally
a problem with a procedurally generated terrain, since the terrain
does not come into existence before we look at it, and then even
only a small part of the total terrain is generated.

12.3.2 Dropping water

This method is not real-time, but rather an extension to design.
Rivers are generated procedurally in a way that makes them fit per-
fectly into the landscape. The resulting rivers are then stored as
design and are blended into the terrain when it is generated. The
more rivers, and the more detailed they are, the more memory and
preprocessing time will be used on them. The problem with the pro-
file method is that it does not follow the landscape, because there
is not any landscape to follow, before an observer looks at it. The
solution can be to actually generate the landscape and let water run
downhill from some starting position. We do not have to define the
entire landscape in order for this to work. A position is designated
drop point and the triangle containing the point is refined until it
reaches a reasonable level of detail. The finer the detail, the more
correct a solution is obtained, and the more time it takes.

This method for river calculation is describes in detail in section 13.

12.4 Vegetation

Vegetation is a constituent part of a realistic looking landscape. It
is so on different scale and for different reason. When looking at a

13 CALCULATING THE NATURAL FLOW OF A RIVER 34

terrain from far away one would expect to see plant belt up along
the incline of mountain. The absence of vegetation at the top of
mountain and in dry areas are also indirectly linked to the role of
vegetation. But when moving closer to the surface of the terrain
and looking across flat areas, vegetation can break the monotony
by adding variation to the scene. Especially so when the vegetation
is rendered as billboards or even as 3D models.

Much of the landscapes color is defined by vegetation, as we de-
scribe in more detail in section 14, but there we deal only with ”flat”
vegetation, which defines ground color, but adds no extra form.

12.5 Erosion

Dunes along the coast line and in deserts. Volcanoes with their
once rough edges rounded. River bed winding through the valley.
Glaciers moving larger rocks across the country. All examples of
erosion of the landscape. One type of erosion is already described
in section 12.3.

Erosion is an important factor in making the terrain believable. But
also the lack of erosion or only minor erosion is expected in some
cases. Like meteor crates on for example the Moon. Meteor crates
are highly visible due to the close to non-existing erosion on the
Moon.

Simulating erosion can produce quite amazing terrains. Soft, half
moon shaped dunes like seen in deserts on the Earth or natural look-
ing river systems. In H. Nishimori and N. Ouchi article,[Nishimori
and Ouchi 1993], they are simulating erosion and disposal of sedi-
ments. They achieve to produce two types of dunes commonly seen
in dessert on the Earth.

Jacob Olsen [Olsen 2004] has come up with a solution to produce
eroded terrain realtime. Erosion generally produces heigh altitude
rough terrain and low altitude soft terrain. This is due to mate-
rial being washes, blown or falling down from above to settle in
the lower areas. Further more, areas near coastal lines will tend
to either have very steep slopes, or be very smooth, depending of
whether the ground is consisting of rocks or softer soil.

Erosion can be simulated real-time by smoothing the terrain more
or less, depending on the level of erosion. Erosion of design el-
ements (section 11) can be simulated by ajusting the blend factor
down towards zero. At zero then design is entirely gone and only
the roughed landscape remains.

13 Calculating the natural flow of a river

The ”rule” in ROAM is that any given triangle will only have neigh-
boring triangles which are one level larger, one level smaller or the
same level. No two triangles with a level difference of more than
one will ever exist. It is easy to see that a neighbor will either share
the left, the right or the bottom edge. If the neighbor shares the left
or right side edges, then it does so with either one of its side edges
or its bottom. If it does so with a side edge, then it is obviously the
same size. If it does so with its bottom, then its bottom is as small
as the current triangles side, and it is one level smaller. If on the
other hand a neighbor shares one of its side edges with the current
triangles bottom edge, then the neighbor is one level larger.

This means that if the drop point is located in a very small triangle,
then the three neighbors are at most one level larger, and so they
are very small and detailed as well. We only ever need the current
and the neighboring triangles to be detailed. The world outside
this small area is of no relevance, since the water is at the current

triangle, and can only flow into the neighbors. The surroundings
can be as rough as they want to be, as shown in Figure 64.

We can now look at the current triangles normal vector and directly
see which neighbor should receive the water, or even how much
water each of the neighbors should receive. We can also just de-
cide on the lowest positioned neighbor and send all the water into
it. Looking at it at the fine scale, the normal should be used, but at
a slightly larger perspective the lowest neighbor is a good choice.
We use lowest neighbor in order to avoid local minima. To let the
water flow in a slightly wider stream, one could decide on some
randomness in how the receiving neighbor is selected. A weighted
randomness, where the lowest is most likely would be easy to im-
plement.

Figure 64: Four levels of zoom into a lonely river on a planets sur-
face. The first image shows how rough the surroundings of a river
can be, while the last one shows the flow of a river which ends up
filling an irregularly shaped lake

13 CALCULATING THE NATURAL FLOW OF A RIVER 35

Figure 65: Twelve discrete steps in flowing water

A drop of water can be moved around like this, but it will quickly
be caught in a local minimum, and that would be the end of that
river. The solution is to always move towards the neighbor with
lowest altitude while considering water level as well. A triangles
altitude should then be the altitude plus the level of deposited water
on top of it. This means that whenever the water moves, it moves
as a stream, which means that it drags water with it. There is a front
of the water, which is the ”drop” and there is a trailing stream of
water at the same water level, or higher.

The method new becomes dropping water on a triangle and raising
its water level by one unit. Then we find the lowest neighbor tri-
angle and move to it and raise its water level by one unit. If more
than one triangle are equally low then we select one at random. If
we arrive at a local minimum, where there is no lower neighbor,
then we raise the local water level by one unit, while remaining
stationary, and suddenly the previously traveled triangles are once
again lower, and we can move back. This has the effect of water
filling local minima in the terrain until the lowest point on the edge
is reached in which case the water rushes out and moves along its
path.

A simple example of water starting in a local minimum is shown on
Figure 65. The water is dropped at 1. Its lowest neighbor is to the
left. It moved left to three from where there is no lower neighbor (1
and 2 had their water level raised by one), so it raises its own level,
and becomes 4. Now 2 is a neighbor which is just as low, and the
water moves there in step 5. It moves to the right until it again gets
stuck at 6. It raises its level and becomes 7 and can now move left
again. This time is does not stop at 9 but keeps moving left into 10
from which it drops down into step 11. From there it flows on. The
resulting mesh is shown in Figure 66 where one can see the detailed
mesh containing water and the coarse surroundings.

13.1 Moving point of interest

Before choosing where to flow the water next, the three neighbors
all need to be at the same subdivision level as the current triangle.
If not, then we don’t know exactly which neighbor is lowest, since
that can change when the triangle is refined. Neighbors are at most
one level lower in subdivision level, so it will be quick to ensure
the correct level for the neighbors by splitting those which are too
large. Remember that we do not generate a new mesh each time the
water flows. We merely refines the existing one. When water flows
and raises the water level, we need to store this information on a per

Figure 66: The calculated path of a river in a 3D landscape, showing
both the winding flow and river basins filling upw

triangle basis. Any given triangle, which contains water, knows its
current water level.

An example of a mesh, which has been optimized as described, to
let water flow the correct way, and to form river basins, is shown in
Figure 67. The landscape is not colored blue or raised to the water
level. What is shown in high detail is the landscape which is under
water. In the example, the landscape under water is subdivided into
triangles of around 3 by 112 meters in size. It is apparent that the
landscape outside the water filled region can be as rough it want to.
It does not affect the accuracy of the calculation. What is shown is
a river flowing into view from the right hand side in the top of the
image. From there it flows down and left to a point where it reaches
a local minimum and fills a lake. At some point the lake overflows
near the center of the image and starts filling up a neighboring min-
imum. In this example the flow was stopped when a triangle count
of 100 000 was reached.

A river forming a string of interconnected lakes can be seen in Fig-
ure 68, while Figure 69 shows two lakes created and connected by
a single river.

The tracing of a river stops when it meets the ocean as seen in Fig-
ure 123.

13.2 From 3D river to 2D design

As described previously, a river can be calculated by optimizing a
mesh and flowing water. A mesh defining a river is not a form which
is easy to store for further reference, and it is very much unlike the
design methods we are using.

13 CALCULATING THE NATURAL FLOW OF A RIVER 36

Figure 67: A mesh optimized by flow calculation for a river

Figure 68: A river forms a system of interconnected lakes

Figure 69: Two lakes are created by and connected through a single
river

Figure 70: A river flows through the landscape, forms a single lake
and then moves on till it reaches the oceanw

13 CALCULATING THE NATURAL FLOW OF A RIVER 37

Figure 71: Two different bounding areas for the same collection of
points

What we need is to transform the 3D river mesh into a 2D design.
This is easily done, since this is in essence what we do when sam-
pling a design for a match section 11.3.1, given a 3D position. We
then iterate though all ”below-water” triangles and project them
into design space where they can be stored in an array as water
level values.

A design space needs an orientation, which is not given. In general
we can decide on a y-axis which is perpendicular to the spherical
defining the planet. In other words, the y-axis should point away
from the center of the planet. The x- and z-axis can be any two
vectors which are normal to each other and the y-axis. Some are
more optimal than others.

As an example. Consider a river flowing in a straight line with the
length L. If we define x and z so that the river flows along x=z in
design space, then the array used for storage will need to have a
width and height of

√
L2/2. If on the other hand the axis were

selected so that the river flows along x, then the array would be
L wide and 1 heigh, which is obviously more effective. The only
situation in which the choice makes no difference is when the river
triangles are spread evenly in all directions, which is rarely the case,

A rivers optimal design space We find the optimal coordinate
system through principal component analysis of the river triangles.
By aligning our design space axis with the principal axis, we obtain
an optimal design space representation. An example of a group of
positions and their resulting principal axis, as well as the unit sphere
in the principal space, is shown in Figure 72. It should be evident
that the points can more compactly be represented by the principal
coordinate system, as shown in Figure 71 where the same collection
of points are contained in two different coordinate systems. The
system, with its axis aligned to the principal axis of the points, can
represent the points more compact.

We decide to define the x-axis as the larger of the principal axis,
and the z-axis as the smaller. We perform this analysis 2D space, by
first transforming the 3D position into an arbitrary design space and
setting the y-values to be zero. This is done to make the calculation
of the covariance matrix and the eigen vectors and values easier
by dropping a dimension. When we have performed the principal
component analysis in this design space, we rotate the axis to align
with the principal axis.

13.3 Lakes

Lakes can be created by rivers filling larger local minima, and they
can be at any altitude. If a river is limited in how many steps it can
make, then it might end its journey in a lake, which will then only
have an inlet. If the river is not limited in number of steps, then it

Figure 72: The principal axis, and unit sphere, for a group of 3D
positions

will fill up the lake until it overflows and then flow on from there.
This will give a lake with both an inlet and en outlet.

Figure 73 shows a lake with no apparent inlet or outlet. The source
of the river is at the bottom of the lake, or can be though of as being
many very small streams, which are not themselves visible.

Figure 74 shows a lake with both an inlet and an outlet. It is formed
by a river flowing through the landscape, and getting stuck at a
local minimum until a lake is formed and the water level is raised
enough for the river to flow out through the lowest point of the local
minimum.

13.4 Erosion

The model can be extended in a way so that not only does water
flow and deposit more water - it also erodes the terrain while flow-
ing. The moving drop of water could absorb and deposit soil when
moving across the landscape. The absorption and deposition would
be a function of the gradient of the current triangle. When water
rushes down a steep slope, it erodes and does not deposit. When it
oozes along over flat terrain, it will not erode but deposit. This will
have the effect of rivers carving deep into steep slopes and flatten-
ing out in the lowlands. If implementing erosion, then not only the
water level should be recorded, but also the resulting ground level
should be stored to be used when rendering the terrain.

13.5 Dry inseas and filling the ocean

Just as we can raise the ocean to become rivers and lakes, we could
lower it, in order to get regions of dry land below sea level, which
are cut off from the ocean. We can randomly sample position on
the globe, and if its altitude is below sea level, then we can flow a
river in it and fill it up until we are above sea level. There needs
to be an upper limit for this river, because we could very well have
started at a position which is actually in the ocean, and then we will
really just be filling the ocean, which could take some time. If we
rise above sea level before we run out of water, then we have a dry
insea. The river is not actually used to provide water this time. It
is just to sample the area to ensure that we are not connected to the

13 CALCULATING THE NATURAL FLOW OF A RIVER 38

Figure 73: A lake with no visible inlet or outlet

Figure 74: A lake with both an inlet and an outletw

ocean. This method will generally take a long time, and will often
fail to find a low area not connected to the ocean. The question
is also how much we would miss those low areas if they are just
all filled with the ocean. If the MESH resolution was quite coarse,
then we could actually use this method to generate the water. Rivers
would actually flow and fill the ocean on an inertially dry planet.

13.6 Visualization of rivers and lakes

A precalculated river is a collection of water levels. It has to be
visualized in some way to indicate the existence of a river at the
specific terrain location.

Raising the ocean An option would be to raise the ocean at
that position. Rather than moving the landscape, to show the river,
which is unrealistic, we would raise the ocean. The ocean would
need to be highly detailed at that location, to avoid raising water
into neighboring land triangles, where there is no river.

Coloring the pixels While it would give a very rough end result
to color vertices blue, whenever they intersect with the river, one
could instead color the pixels blue when they were at the location
of a river. One could in theory convert the river into a real texture
and project it onto the terrain, but a simpler method would be to
use the pixel shader more directly. Whenever a vertex is generated
at a location which intersects with the design spacesection 51 of
a river, the vertex gets projected into design space and has the re-
sulting position stored in the vertex itself. When the vertices are
later rendered, they contain design space coordinates and the pix-
els in between two vertices will get a linearly interpolated design
space coordinate (just as if it was texture coordinates for the ver-
tices). When the pixel shader outputs a color it samples into the
rivers design space and outputs blue of the samples water level is
above zero.

A few problems exist with the pixel coloring in the pixel shader. If
a landscape has many rivers then a vertex could be inside more than
one rivers design space and it would then need to store more design
space coordinates (like multiple texture coordinates). While we can
easily provide a vertex with storage for more than one design space
coordinate, we need to define some upper limit to the number of
coordinates. If this upper limit needs to be very high then it is a
problem. A more general problem is that this method would not
show the real water level - but only a color - and it would not allow
the observer to dive into the river, or lake, and see the bottom. It
would however allow rivers to be seen from far away as thin blue
lines, which the raised ocean would not, unless the subdivision level
near the river is very high.

13.7 The river conclusion

This method will flow in a natural way in the landscape. It flows
downhill and fills up river basins in the local minima. The flow
can keep on until the sea is reached, or until a predefined number
of steps has been taken, in order to simulate water being absorbed
into the ground or evaporating. An interesting feature is that if a
two rivers meet, then the combined water level will rise, since the
second river will be depositing water on top of the first one in order
to move around. Remember that when the drop of water moves,
it always deposits water. Figure 66 shows a quite realistic river
in a 3D landscape. Only the river itself is shown, or rather the
river bottom is shown. Near the top there is a sharp turn which is

14 VISUALIZATION 39

caused by the fact that the river flows in 3D and at the position it
starts falling down a very steep mountain side. The river ends in a
large lake. Figure 64 shows both the final river flow as well as the
roughness of its surroundings. While the river itself used 50 000
triangles, while the rest of the landscape used only slightly more
than 500 triangles.

A feature not shown here is rivers merging and splitting. Merges
happens when two rivers end up in the same channel, while splitting
generally only happens at river deltas. Splitting could be added by
letting the river flow in a more or less random direction whenever
the gradient is below a certain threshold. This will require the ”drop
of water” to split into several drops, or it will take several iterations
with restarts to form the entire river delta.

14 Visualization

Having the mesh stored as a connected group of vertices does noth-
ing for the experience of watching a terrain. The mesh obviously
needs to be rendered.

The ROAM is already a collection of triangles, so it is easily ren-
dered, but a few extra things need attention before it looks good.
These things are mainly surface color and lighting. A mesh con-
sisting of tiny triangles with nice detailed surfaces and properly lit
will go long way for the experience of watching an actual terrain.

Another thing which most planets need is an ocean and an at-
mosphere. We will not go into great detail about how to implement
those to make it look realistic, but refer the reader to other texts
dealing with the subject.

What we do want to point out however, is the way we feel one best
deals with ground, ocean and atmosphere. Each can be a separate
ROAM with its own split and merge priorities and its own color
scheme. This means that the ground is actually one whole uninter-
rupted mesh, which just happens to be below the ocean surface at
some locations. Then one can color the ground differently when it
is over water from when it is below water, and it means that one can
easily fly under water and explore there as well as seen on Figure
75. Letting the ocean ROAM become more detailed near the ob-
server also allows for details such as waves to be rendered in great
detail. Having a sperate mesh representing the atmosphere allows
for nice effects such as partial transparency when the sun rices and
sets as seen in Figure 76 and in Figure 76, and the entirely different
look when one is above the atmosphere as seen in Figure 78. Clouds
could be generated by coloring the atmosphere white and letting a
noise function define the alpha component as seen in Figure 79. It
would not be complicated to select a color from dark gray to clear
white based on the noise function as well. That way the cloud cover
could vary from heavy dark clouds to thin white clouds.

14.1 Lighting

In order to calculate correct lighting we need the normal vectors
four our mesh. We calculate the normals as an area weighted av-
erage of the normals of the triangles surrounding the vertex. This
is done to ensure that large triangles have more influence on the re-
sulting vertex normal. There are other methods, but that is a subject
on its own. Figure 80 show an example where a vertex’s normal is
calculated as the average of four triangle normals. All four triangles
are equal in size, so the normal is justN = (N0+N1+N2+N3)∗ 1

4 .

A thing one should keep in mind is that there actually is no normal
at a vertex, unless all surrounding triangles are in the same plane.

Figure 75: The ground a muddy color under water. The light is also
made more ambient to simulate the scattering effect of the water
and particles therein

Figure 76: Looking towards the day break. The sky is starting to be-
come more bright and blue in the lower right corner, but the stars are
still slightly visible, more so when looking away from the lightw

The triangles do not form a continuous surface. At the vertices the
first derivative is undefined, and that is what defines the normal.
Mathematically speaking the normal is undefined at the vertices, so
which ever normal we decide on can be equally correct. It all comes
down to what we think looks best, and what seems right when we
consider the underlying continuous surface which we are trying to
approximate with the mesh.

14 VISUALIZATION 40

Figure 77: The sun is back on the sky, and we can no longer see the
stars. Only the clear blue sky is visiblew

Figure 78: From a position high above the atmosphere, it looks like
a semi transparent layer of air. This is not very realistic, but it shows
that the atmosphere can easily look very different depending on the
observers positionw

14.1.1 Enter the shade

We start this section with a very brief introduction to the three most
common shading methods. It is in no way meant to be a thorough
explanation. We just want to bring the terms into focus before deal-
ing with the details relating to ROAM-generated landscaped.

The most common ways of shading a mesh is faceted, Gouraud
and Phong. All calculate the diffuse lighting at a given location as
the dot product between the normal vector and the vector pointing
towards the light. This means that a face, which normal points di-
rectly at the light, receives full light intensity, while a face, which
normal is at a right angle to the light, received no light. What they
do with this light intensity next is what separate them.

• Faceted - A triangle has one normal vector for its entire sur-
face, which gives it the same light intensity all over. This is
not the most common method, but in a sense it is the most
correct. Faceted, or flat shading as it is also called, actually
lights the triangle mesh as it is supposed to be lighted. The
triangles are shaded as if they were flat, which they are.

• Gouraud - Given normal vectors at the vertices, the light at
the vertices are calculated and then that light is interpolated
in between the vertices to shade the entire surface. This is a

Figure 79: The atmosphere is colored white, but the alpha compo-
nent is defined by a noise function to emulate cloud coverw

Figure 80: Vertex normal calculated as average of surrounding tri-
angle normals

quick method to give some smoothness to the shading. It is
however an approximation. The method attempts to shade the
collection of flat triangles, as if they were more smooth. They
areflat, but generally the grid of flat triangles is trying to rep-
resent a continuous surface which is not faceted. A problem
with Gourauds shading is that no position on the face of the
triangle can be brighter than the corners, since the light in-
tensity on the face is an interpolated value obtained from the
corners.

• Phong - Besides the ability to provide highlight, Phong sepa-
rates itself from Gouraud by interpolating the vertex normals
across the surface, and not interpolating the light. For every
pixel, the current normal is used to calculate light intensity.
This is a much more accurate method, since the light is in
a sense sampled more often. rather than sampling the light
at three corners of a triangle, Phong samples for every pixel.

14 VISUALIZATION 41

This is smoother, it allows for the brightest spot to be some-
where on the face of the triangle, and not just on the corners.
Phong also assumes that we want to represent a smooth and
continuous surface with our faceted mesh of triangles.

We have claimed that faceted shading is actually the correct shading
of our mesh, and we stand by that. However, we need the mesh to
be so fine that every triangle is no larger than one pixel in order
for this to represent our terrain accurately. Since that is generally
not an option, we have to resort to smooth shading. Using Phongs
shading model should let us have a somewhat rough triangle mesh
and still show it as if it is more finely detailed and continuous. That
it does, but it is not without problems.

Phong vs. ROAM Using ROAM and Phong naively soon gen-
erates nasty artifacts as seen in Figure 81. The terrain is filled with
odd looking squares and triangles, which are clearly visible. We
have named the artifacts ”pyramids” because of their shape. They
all consist of four triangles meeting in a common center vertex. All
triangles have the same size and they are all generated the same
time by the same split operation in ROAM. The center vertex is
offset from the four corners and this forms a more or less regular
pyramid.

Figure 81: Artifacts from Phong shading a ROAM generated mesh

At first this looks like an error in the normal calculations or in the
shader itself. It is however not an error. It is how Phong lights that
shape. Though a smooth interpolation is used by Phongs shading
model to generate normal vectors for every pixel on the surface, it is
still a simple linear interpolation, which has its problems at times.
See Figure 82 to see a demonstration of the problem. A pyramid is
drawn as seen exactly from the top. The light is coming from above
and the four sides each point 45 degrees away from vertical and out
to one of the four sides. The vertex normal at the top is therefore
pointing straight up. The four vertex normals at the base are all de-
fined to be horizontal, as if they are connected to other triangles (out
of view) which have normals pointing downwards. The normals are
therefore interpolated from|0,1,0|T to |+/−0.71,0,+/−0.71|T .
This is done linearly, so half way down the sides, there will be a
square line going around the pyramid, where the normals are all 45
degrees away from vertical. At this line the light intensity of the
pixels will all becos(45) = 0.71, and all pixels on the line will have
the same appearance. Going one pixel up or down will change the
light, but again all pixels at the same level will look alike. This

way the top will be bright and the base will be dark and we get Fig-
ure 82, which is not smooth looking - even though we do a smooth
interpolation of the normal.

Figure 82: Demonstrating how Phong lighting a pyramid will gen-
erate artifacts which are in no way looking smooth

The reason this paragraph has the title ”Phong vs. ROAM” is that
even though the pyramid artifacts exists on every mesh, it is par-
ticularly frequent in a mesh generated by ROAM. This is because
of the way triangles are subdivided. Whenever two triangles are
split into four, a pyramid shape is generated, and that shape is more
prone to visible errors, than for example 8 triangles, meeting on a
single vertex, are. The more triangles we have around a vertex, the
more the pyramid will look like a circle, and the less prominent then
bright edges between the triangles will be. On Figure 82 we have
four distinct lines of ”brighter” pixels, which would be less visible
if we had more of them, since it would become more smooth that
way.

Being brighter than most An interesting fact is that the
brighter lines are not really brighter. If you draw a square paral-
lel to the sides and centered around the top, then it has the same
brightness all the way. What we see as bright lines is an artifact
known as Mach bands[Watt 1992], which is also quite prominent in
Gouraud shading. In [Olano and Yoo 1993] the artifacts of Phong
shading, and a solution to them, are described in detail. It is not so
much the color changing as it is the change in color changing. The
human eye is very sensitive to changes in the change of a color, or
put another way; while we may not see the color change it self, we
are sensitive to changes in the colors first derivative. If you try to
get a clear look at the lines in Figure 82, then it is not that easy. The
more you focus on it, the more blurred the lines become. If you
zoom into the line, then it almost disappears. That does us little
good however. Sometimes graphics is easy because we can cheat
the eye and just make something that looks right. Other times, like
now, it’s hard because the eye is being unreasonable.

14 VISUALIZATION 42

Avoiding the pyramids pyramids are very visible, and they look
wrong. ROAM makes loads of pyramids. It sounds like a problem,
and that is exactly what it is. There are two somewhat easy solutions
to the problem.

• Split the pyramids - If we always make it a priority to split
pyramids, then we can make them go away. We only have so
many triangles to do with, and whenever we split something,
we make new smaller pyramids, so we can’t simply split away.
What we can do is to make splitting pyramids a somewhat
higher priority than splitting triangles which are not in pyra-
mids. We can also define pyramids with very different vertex
normals as being more of a problem and prioritize those even
higher.

• Smooth the light - The reason we see the pyramids so clearly
is that the five vertices (top and four at the base) are not evenly
lit. If they all receive the same light, then a pointy pyramid
will look flat, and in essence not be there any more. We can
not just make pyramids look flat, since this will make it im-
possible to see how the landscape is formed. So if we can
somehow make the light more even for all the vertices, then
the problem will go away. In lighting we have direct and in-
direct light. The dot product of the normal and light direction
only deals with direct lighting and it strongly connected to
the normal. Indirect lighting, considered to come from every-
where, would be the same for all vertices, no matter what their
normal is. The quick hack to provide indirect lighting is to
create ambient light which lights up any surface equally no
matter how it is oriented. If we do this on a planet, then we
get light in the middle of the night, which is generally not
something we want. An alternative to ordinary ambient light
is to calculate the light which would hit a horizontal surface
at that position on the planet, and then use that as ambient
light. It will only give light during the day, and it will give
most light at midday. At the same time, this light will be
almost exactly the same intensity for all vertices (unless the
triangle is huge, in which case it will probably be subdivided
anyway). This can easily be implemented by taking a vertex
normal to be the average of the neighboring triangles and the
vector representing vertical. We propose weighting the old
style normal and vertical 50/50, so for a pyramid top we have
N = 1

8(N0+N1+N2+N3)+ 1
2Vertical. A pyramid infested

landscape and its ”vertical normal”-fixed counterpart can be
seen on Figure 83 and Figure 84. The pyramids have not gone
away, but they are far less intrusive.

Figure 83: Landscape with plenty of pyramids and no attempt to
hide them

Figure 84: Landscape with plenty of pyramids which are made less
apparent by blending the vertex normals with a vertical normal vec-
tor to simulate ambient light which changes across the face of the
spherical planet

Light on a sphere The usual lighting scheme is all about check-
ing if the normal vector points towards the light and how much.
Lighting is never that simple. Objects cast shadows on themselves
which require some extra thought to be put into the lighting. It
would not be terribly difficult to implement volume shadows for
the optimized mesh, and get that part of lighting into the scene as
well, but we opt for an easier solution. For a planet it is not difficult
to check if a position is in the general shadow of the entire planet.
The general shadow is the one cast by the spherical base shape of
the planet, and for a directional light, as the sun, this forms a cylin-
der of shadow behind the planet.

Figure 85: A surface can be in darkness even though it is facing the
light

14.2 Terrain color

Having a bumpy landscape, with nothing but uniformly colored sur-
faces, will not do much for the feeling of ”being there” at another
world. In order for the experience to become more intriguing, we

14 VISUALIZATION 43

need at the very least some colors, and the colors should have fine
detail to make the surface look interesting.

A very common method to color procedurally generated terrains is
to use a 1D texture where the terrain altitude is used as a texture
coordinate. This lets the terrain be white on mountain peaks, gray
on rocky surfaces and green in the lowland. This can look good
enough at times, when the texture has many different colors with
smooth transitions. It does however generate a ”banding” effect
where horizontal cross sections of the terrain all has the same color.
On Figure 86 this is shown on a terrain with only 4 colors. The
sky and the water is bluish and should appear separated from the
terrain, as they do, but the terrain itself does not look natural at all.
In the real world many other factors than the altitude play a role in
defining the color. Figure 87 shows another example while Figure
88 shows the contour lines for the same landscape. It is evident that
the colors are following the contour lines exactly.

Figure 86: Terrain colored based only on its altitude

Figure 87: A terrain is colored according to its altitude. The col-
ors are noticeably arranged in bands where the border between two
colors are at one specific altitude.

Adding something random In nature, does the snow line or tree
line on mountains form a perfectly horizontal line? The answer is of
course that it doesn’t. That is really the problem. The solution could

Figure 88: A terrain is colored according to its altitude and it is
clear that the borders between colors follow the contour lines.

be to base the color of the landscape on more than the altitude. The
altitude and some noise function could let the snow line and tree
line move up and down, within certain bounds, as they move across
the terrain.

If we perturb the altitude with the noise, before inputting it to the
color-by-altitude function, then we will easily get this effect.

On Figure 89 a terrain is shown, where the color is based on altitude
as well as a random perturbation. The terrain clearly looks more
real now that the snowy areas are not cut off at a certain altitude,
but sometimes stretch downwards and sometimes stretch up. The
contour lines are again shown on the landscape in Figure 90 and
now it is clear that though the terrain color is related to the altitude,
it has a random element as well.

Figure 89: A terrain is colored according to its altitude and a noise
offset which perturbs the color selection, so the border between col-
ors no longer occur at specific altitudes, though snow is still domi-
nant at high altitudes, water is below a certain altitude, and grass is
dominant at the lower areas.

Two more examples of color by altitude with and without noise are
shown in Figure 91 and Figure 92 where it again is evident that
noise adds something extra which makes the image a little less syn-
thetic looking. Some parts of the terrain, which are high enough to
be defined as rocks, are now grassy, while other parts in the lowland
now have small rock formations.

The noise can be defined in different ways. Figure 93 and Fig-
ure 94 show the same terrain but this time with slightly more high

14 VISUALIZATION 44

Figure 90: A terrain is colored according to its altitude and an extra
noise function which perturb the altitudes. It is now clear that the
borders between colors do not entirely follow the contour lines.

Figure 91: A terrain is colored according to its altitude

frequency noise. Which frequency and amplitude looks better is
dependent on the use.

Other parameters for selecting a terrain color/type As well
as using the altitude to select a terrain type, one can decide to use
the gradient of the terrain, the facing of the terrain, the latitude on
the planet, procedurally generated weather patterns and so on and
on.

A few general observations, which can easily be integrated into a
terrain engine are that steeply sloped terrain is less likely to carry
snow, hight altitude terrain is more likely to be snowy, terrain near
the poles are more likely to have snow, while terrain near the equa-
tor is more likely to be hot and dry. Mountain and hill sides facing
north, on the northern hemisphere, is likely to be a little colder then
sides facing south. On the southern hemisphere this is reversed. In
the end the terrain type, and resulting color, is easily given though
a few simple probability functions.

Figure 95 shows an example of a terrain where lighter green patches

Figure 92: A terrain is colored according to its altitude where the
altitude is perturbed by a noise function before a color is selected.
The perturbation is low frequency and with medium amplitude

Figure 93: A terrain is colored according to its altitude where the
altitude is perturbed by a noise function before a color is selected.
The perturbation is medium frequency and with medium amplitude

of grass are spread on the darker green based on randomness where
the probability depends on the facing of the terrain. Terrain facing
”left” is more likely to be light green, but not all terrain facing ”left”
is green.

Another basic observation, which holds true for any planet which
receives heat from only one Sun, and which does not have an at-
mosphere which can provide absolutely uniform temperature across
the planet and which does not have a rotational axis which is tilted
90 degrees relative to its orbital plane, is that the poles are colder

14 VISUALIZATION 45

Figure 94: A terrain is colored according to its altitude where the
altitude is perturbed by a noise function before a color is selected.
The perturbation is high frequency and with low amplitude

Figure 95: A terrain is colored according to altitude and its gradient
along with another noise function. On slopes facing ”left” there will
sometimes be patches of light green grass, when the noise function
also allows it.

than the equator. This is most planets, if not all.

This can be simulated for an Earth like planet by generating ”ice”
in the polar regions. An example was generated where everything
north of the 80th parallel is colored white. The result is shown in
Figure 96. While itis a polar cap, it looks quite silly. The exact
same thing is then done while perturbing the latitude with a noise
function before deciding on a pixel color. The result is shown in
Figure 97. This time it looks very much more real. The ice stretches
south in some areas while the blue ocean at other points go up into
the high north. Even a few small icebergs have become visible.

Using the pixelshader This method can be implemented on a
per vertex basis, which will often look good enough, but when you
need higher detail than the mesh can provide, it needs to run in the

Figure 96: An ocean is colored according to its latitude and only the
latitude. Over a certain latitude, the ocean is frozen, and rendered
as white ice

Figure 97: An ocean is colored according to its latitude and a noise
function. Over a certain latitude plus minus noise, the ocean is
frozen, and rendered as white ice

pixel shader, which is what we have done in the demo from which
the pictures are taken.

14.2.1 Pixel shader to color the landscape

Rather than using textures, one can use the pixel shader to color
the landscape on a per pixel basis. If the above mentioned random
offsets, as well as terrain properties such as 3D position and normal,
are fed into a pixel shader, then it can be programmed to select the
appropriate color.

This can be thought of as a way to procedurally generate the rel-
evant textures real-time, but it is more than that. When blending
textures directly, the textures blend factor will be defined on a per
vertex basis. If we have an edge from v0 to v1 and v0 is grass
and v1 is rock, then the grass texture will blend smoothly over into
the rock texture along the edge. In the point right in the middle,
the textures will each contribute with 50%. This will not look like
what is seen in nature. The central parts will be smudged and look
unrealistic.

14 VISUALIZATION 46

14.2.2 Textures to color the landscape

On a small scale landscape a detailed and artistic texture could be
draped on top of the landscape. An orthogonal (or near orthogonal)
projected photograph of a real landscape could be used as a tex-
ture, and it would look great. There is a problem in the size though.
For an entire planet this would be one huge texture, and on a pro-
cedurally generated planet the texture would have to be generated
procedurally as well. As a means to color the entire landscape, a
texture is not a usable method.

Tileable textures Textures can however be used to generate de-
tail. Grass is not just plain green and rocks are not just plain gray.
If the solid colors are replaced with textures which look somewhat
like grass and rocks, then the terrain would come much more to
life. This is another common method, and it works well in most
cases. Based on altitude you sample from different textures. this
is not without problems though. Even large textures, which are
designed to tile seamlessly in horizontal and vertical direction, pro-
duces repetitive patterns when used on the large scale. Imagine a
texture which consists of random noise but with a slightly darker
center. That texture will tile very well, but when this texture in
a grid of 100 by 100 tiles, then you will see a pattern of equally
spaced dark spots, which is not what we want. This adds an extra
requirement for detail texture, which is that it should either be noisy
or have only one solid color. Any strong change in color over the
surface of the texture should be avoided. On Figure 98 an extreme
example of this is shown. The texture used does tile quite well, but
it is much darker in the center, and this is a problem. The same ter-
rain is shown in Figure 99. This time a more homogeneous tileable
texture is used, and here it looks just fine.

Figure 98: Even textures which tile seamlessly generates patterns
when used on a large scale

Wrapping a texture As any cartographer knows, there is no
way to flatten out the surface of a 3D sphere to get a 2D surface
without distortion or cuts. This is just as big a problem when doing
it the other way around, as is the case when using a 2D texture on
a 3D sphere. Generally the texture will have to be pre-distorted so
that when it is put on the sphere, and is distorted, it returns to its
correct look. That is a clever little trick, but it doesn’t really work
with tileable textures if they are supposed to cover the sphere by
tiling. The distortion will not be the same for every texture, but will
vary depending on the latitude on which it is placed. One could use
slim and very high textures which only tile around the longitudes

Figure 99: Tileable textures can be used if they are very homoge-
neous

but stretch from pole to pole, and this could be pre-distorted and
tiled. That will work, but the textures will have to be insanely tall
for them to stretch from pole to pole with sufficient detail.

If one naively uses an ordinary texture and define polar coordinates
for the sphere, then pinching is the result, which means that all the
pixels in the texture in the top and bottom row will meet in a single
point at the poles.

Dealing with an initial cube, as we are with our choice of ROAM
base mesh, we could try and select texture coordinates for our cube
as shown in Figure 101, but even that would not solve our problem,
since we will get singular U-texture coordinates for the left and
right side, resulting in lines as seen in Figure 100.

We really need an extra set of coordinates for each vertex. Then we
could use both and every face could have both lines and dots, which
could give a nice effect.

Figure 100: A line artifact from singular U-texture coordinates and
a noise texture

That would solve the problems with serious distortion and pinch-
ing. It still doesn’t solve the entire problem. It works badly with
ordinary tileable textures and it places a serious constraint on the
texture used since many more edges must fit together seamlessly.
In ordinary tileable textures, the top fits the bottom and left fits
right. A texture can further more be made to be tileable in all di-
rections and orientations, in which case top, bottom,left and right

15 VIEW FRUSTUM CULLING 47

must all match each other. With the unfolded cube we need even
more edges to match: a and b, c and d, e and f, g and h as well as
4 other edge pairs not all named in the figure. That is not easy to
get, but one texture which tiles so perfectly is white noise. Brown
noise[NOI 2006] would possibly work better since its intensity falls
when its frequency rises, just as is the case with the landscape noise
functions.

You can cut and slice a texture with noise any way you like, and it
still looks fine. If white noise is good enough to provide that extra
little touch of detail, then it is a good choice. One could replace the
noise texture with noise in the pixel shader, but it would look odd
because the noise will always be per pixel and you can never move
in close to a spot and see it become larger. The spot will always
be exactly one pixel large. Two examples of a texture containing
white noise being applied to a mesh using the layout in Figure 101
are shown in Figure 102 and Figure 103. A very close look at the
terrain in Figure 104 shows that the spots are indeed larger when
observed from close range. The noise does bring the surface more
to life than what you get from a solid color, but it is clearly not what
you would call an outstanding result.

Figure 101: Texture coordinates selected for the six sides of a cube.
It is shown unfolded inside the texture

Figure 102: A terrain is textured with white noise, which changes
the brightness of the terrain relative to the texture

Blending In a simple scenario you have grass at altitude 0 and
rocks at altitude 1. In between you have a mix of the two. The
result is that the terrain will get more colors than it might else get
from a low resolution 1D texture. When using textures blending
is more of a requirement, since you will generally not have a wide
range of different textures to use. Each texture is assigned to an

Figure 103: A terrain is textured with white noise, which changes
the brightness of the terrain relative to the texture

Figure 104: A very close view of a terrain textured with white noise,
which changes the brightness of the terrain relative to the texture

altitude, but in between a mix or the textures, above and below, is
used.

Texture conclusion Textures are an effective (computational
wise) method of adding a little extra detail to large flat triangles.
That explains why it is almost always used when rendering 3D
geometry. It does have its problems when the surface wraps around
and connects to itself, as is the case with a sphere. The usual sphere
mapping method where one pre-distorts a texture and then map it
using polar coordinates is not usable when textures need to be tiled.
Using naive cube mapping, to avoid distortion, makes some part of
the texture mapped sphere appear error free, but other areas will
experience singularities.

15 View frustum culling

This technique is often used in conjunction with LOD methods. In
some cases these LOD methods makes use of quad trees and are
easily combined with view frustum culling. In our case, using the
ROAM algorithm, triangles are structured in a bin tree and triangles
are bound by a bounding sphere, which also bounds the triangles
descendants as described in section 16.

We use the view frustum culling test to modify the priority of tri-
angles used in the ROAM algorithm section 6.2. If a triangle is
outside the view frustum its priority is lowered and if it is inside the

16 VARIOUS ERROR METRICS 48

frustum its priority is raised. This of course results in more trian-
gles in the view frustum, which is desirable. An example of this is
shown in Figure 115, the view frustum is highly detailed and the
outside the opposite.

Testing whether a triangles bounding sphere is inside the view frus-
tum is not all that complicated, but a few special scenarios could
arise.

Testing a bounding spheres inclusion in the view frustum results in
three cases. Either the bounding sphere is completely outside, com-
pletely inside or partially inside the view frustum. When a bound-
ing sphere is either completely inside or outside, then the triangles,
to which the bounding sphere is bound, descendants are likewise
all inside or outside the view frustum. It is only when a triangles
bounding spheres is partially inside that its descendants needs to be
checked for inclusion as well.

In sections where more than one clip plane of the view frustum
meets there is a possibility of falsely ruling a triangle partial inside,
when it is in fact completely outside or inside. A 2D example of this
is illustrated in Figure 15. One could argue that this need not be a
big problem as long as triangles inside are never ruled as outside.
In our case there is a minor performance issue combined with these
triangles. If a triangle is outside the view frustum but falsely ruled
inside, it would probably be split into two new triangles. The two
new triangles could individually have tighter bounding spheres and
in the next iteration they would possibly be ruled outside the view
frustum, which they are, and be merged together reconstructing the
problem once more.

Figure 105: Bounded triangle mistakenly considered partially in-
side view frustum

This problem is more pronounced when clip plane meet in a near
to parallel angle and when bounding spheres does not fit tightly
around their triangle. A solution could be to use more clip planes
like a near clip plane in the cameras origin (which at that location
is redundant) as shown in Figure 15.

We transform the planes making up the view frustum from camera
space to world space, as we generally need to testmanytriangles,
and a transformation of all the bounding spheres to a clipping space
would be more costly than transforming the clip planes to world
space.

Triangles outside the view frustum could be culled, but as we want
a continuous mesh at all times, this is not done. This is due to the
fact that rendering and optimization of the mesh are decoupled, as
described in section 6.7, and if parts of the mesh where culled in the

Figure 106: Adding more clip planes reduces false positive trian-
gles

optimization, we had to make sure, that what is rendered is alway
the continuous part of the culled mesh.

16 Various error metrics

As mentioned previously, error measurements covers a variety of
metrics used in determine the quality of a simplified scene. It ranges
over difference in color, normal, texture coordinate and difference
in geometric models. Last mentioned is also treated in section 6.9.

It is important to realize that the term ”error” can be anything. It
depends on what is important. Error is generally to be thought of
as the difference between the current world representation and the
infinitely detailed ”real” world, but scaled by an importance factor.
Some differences may be large, but have little interest to us, and
then the resulting error is not large.

Error measures are in some cases representative for our visual per-
ception. And when simplifying scenes one can exploit deficiency
in our visual perception. For example objects placed in the periph-
ery of our field of vision contributes less in the overall notion of the
image. A similar effect is seen with objects moving fast.

On the other hand there are changes which we are especial sen-
sitive to. This could be changes to shapes, changes to colors or
color intensity or changes in contrast. Thus error measures should
somehow reflect characteristic from our visual perception to have
optimal effect.

Error measures are used at different levels in conjunction with a
level of detail algorithm. They are primarily used locally, when
deciding a smaller part of a models error. This could be the error
contributed by a triangle in a mesh. Error measures are used glob-
ally for a scenes total errors. This could be an accumulation of all
the errors contributed from triangles in a mesh.

Global error Global errors are used primarily in two different
ways. In the first place, error measures are used to define an ac-
ceptable threshold for which a scene would be accepted when sim-
plifying it. Secondly, it is used in when optimizing a scene when
certain resources are limited. For example, when a scene is limited
to a certain number of polygons, one would try to optimize the use
of these polygons to minimize the global error.

16 VARIOUS ERROR METRICS 49

Local error Local error measures are used when deciding if sim-
plifying a part of a model is feasible, but could be used the other
way around also. Deciding to add more detail to a model are based
on local error metrics as well. As described in section 6.1.2 the
ROAM algorithm decides which triangles should be merge, simpli-
fying the mesh, and which triangles should be split, adding detail
to the mesh, based on error measures.

16.1 Error measures related to geometry

As the ROAM algorithm easily handles different types of errors
we will describe some relevant types of error measures which are
relevant when visualizing planets focusing on its geometry.

One class of errors relate to visibility or view culling. Different
techniques for view culling are well know in computer graphics and
some of these techniques are suitable for error metrics. Instead of
actually culling away triangles, the result of the culling test is used
for prioritizing whether a triangle should be split or not. The result
of a very low priority will be a very large triangle. As we shown in
section 17.5, this result in very little geometry outside the field of
view, which is just as good as no geometry outside the field of view.

View frustum culling A method to test if objects are inside or
outside the view frustum. We describe this in more details in section
15.

Contribution culling If a object in a scene contributes with little
detail to the rendered image, one might consider to cull it all to-
gether. The objects contribution relates to its size, orientation and
distance to the viewer. For terrain it is not easily implemented, but
one way could involve calculation of a bounding spheres contribu-
tion to the image, for example the triangles bounding spheres sec-
tion 7. In the case of the ROAM algorithm a triangles size and the
mesh subdivision level are correlated, so a analogy to contribution
culling is already employed here.

Occlusion culling A method to decide whether some object are
occluded by other objects and therefore culled. In a terrain mesh,
an analogue situation could happen when mountains are occluding
other parts of the terrain. So, strictly speaking, it is not one ob-
ject occluding another object, but self occlusion. Having the mesh
organized in quadtree or in another way having it sorted in a spa-
tial way would make it possible to determine if parts of the mesh
is occluding for other parts. Occlusion queries are a method with
which modern graphics cards can tell exactly how many pixels an
object contributed with. One could render the scene and then turn
off frame-buffer and z-buffer writes and re-render and this time see
which triangles are actually visible. Those not visible could receive
a lower priority for the next frame.

Backface culling Backfacing triangles should never be visible
for terrain and could therefor be culled. As meshes could be used
to represent water surface and the atmosphere and these could be
visible from both above and below, backface culling should not be
used here, or the decision on weather a face is back facing or not,
should be reversed when moving from inside to outside the ocean
or the atmosphere.

16.1.1 Surface layers

Because we are using one mesh to represent terrain and another
mesh to represent the surface of the ocean (and yet another as at-
mosphere), a situation which leads to sizeable visual error arises.

At the coast line the two surfaces are near parallel and as the terrains
LOD changes, the spatial location of the coast line could move. As
the coast line has large contrast this relocation is very conspicuous.
Geo morphing would help little, since a small change in the height
of the terrain still could lead to a large vertical offset of the coast
line. Only with morphing it would not be a sudden pop, but rather
a quick motion of the coastline inwards or outwards, depending on
whether the land was lowered or raised.

The cause of this phenomena lies in the problem we are trying
to solve. We are trying to find the intersection between two sur-
faces and because these planes are near parallel the problem is ill-
conditioned. A relative little change in the input data to the prob-
lem, results in a relative large change in the solution as illustrated
in Figure 107.

Figure 107: Finding the intersection between the surface of the
ocean and the terrain is an ill-conditioned problem. The brown line
is the terrain the green line is approximating and the blue line is the
ocean.

To minimize coastal popping we try to place a vertex from a trian-
gle close to the intersection in the terrain mesh. This is done by
prioritizing triangles higher if they have vertices on either side of
sea level, as seen on Figure 108 where the triangles spanning the
coast line are given a very high priority. The effect is that from
high orbit, the planet will still have highly detailed coast lines, even
though the overall number of triangles is small.

Figure 108: The triangles spanning the coast line have high priority
and are subdivided more than triangles which are entirely on land
or entirely in the ocean. The coast is drawn in a yellowish colorw

This resembles the bisection method for root-finding. Every time a

16 VARIOUS ERROR METRICS 50

triangle which has vertices above and below water level, its prior-
ity is raised and eventually subdivided. This leads to a closer ap-
proximation to the intersection point much like how the bisection
method approximates the root. This method is guaranteed to con-
verge when values are of opposite sign (below and above sea level)
but converges slowly. When the end values arenotof opposite sign,
then the situation is less optimal.

Sample frequency for coastline optimization Shannons sam-
pling theorem states that in order to correctly sample (for later re-
construction) a signal with a frequency f, one needs to sample with
at least 2f. This implies that for a correct sampling of a terrain
which consists of frequencies up to f, one need the triangles to be
small enough so that the vertex distance is smaller than half that f’s
corresponding wavelength.

We do not want to make such a sampling. We merely want to sam-
ple well enough to differentiate between a signal with only a DC12

component and one with an AC13, where we even simplify the sig-
nal to become plus, when above sea level, and minus, when below
sea level, and disregard the actual values, and actual frequencies.
This boils down to sampling in a way so that we can see if the sig-
nal changes sign or if it is steady state. For this to be correct, we
need not to sample at a frequency of 2f, since we are not interested
in the signals actual frequency, but only if it is AC or DC. Sam-
pling at a frequency higher than the lowest frequency will be good
enough.

This can easily be confirmed by a simple example. Imagine that the
point A is just above the sea and that the point B is just above the
sea, while all points in between are below.If we sample at point A
and at point B, then we do not detect the ocean. If we sample any
distance from A which is even so little smaller than the distance
between A and B, then we sample at a point below the sea level,
and detect the ocean correctly.

We can therefore conclude that if we want to detect ocean areas
down to a size of S, then we need to sample (place vertices) closer
than S. If the vertices are S or farther apart, then we can potentially
miss the ocean and thereby miss the coastline which we want to
refine. A good strategy will therefore be to refine the mesh to the
point where the vertices are close enough apart and only then start
giving high priorities to coastal triangles.

Figure 109: If the distance between sample points A and B is too
large, then a coast line can potentially be missed when both are
above or below sea level. If a third sample point C was added at the
midpoint then the ocean would be correctly detected.

If sections between surface, for example between the terrain surface
and water surface, is not being 100% transparent, then triangles of
the terrain being below the water could be prioritized lower, if the
viewer is above the sea level and vice versa.

12Direct current, no variation but a steady value
13Alternating current, a signal with a periodic change in value

16.1.2 Silhouettes

As with coast lines, silhouettes generally has a large contrast and
therefor triangles being part of an objects silhouettes are prioritized
high. Looking at a planet at far distance, higher LOD on the sil-
houettes makes the planet appear round. Looking at a mountain
its silhouettes also needs to be detailed so it does not look unnat-
urally jagged. Looking at the surface normal of a triangle ,and its
neighbors, compared to the view vector, we can determine if the
triangle is part of a silhouette. If the triangles normal ”points to-
wards” the viewer and one of its neighbors normals points away
from the viewer, then the edge between the two forms a silhouette.
The same exact method is used when calculating volume shadows
in other applications. In Figure 110 and Figure 111 an example of a
planet with its silhouette at higher LOD is shown. In Figure 111 it
is also noticeable that the right half of the planet is higher detailed
than the left. This is due to the fact that the right half is facing the
camera.

Figure 110: The planets silhouette has a higher LOD to make it
appear round.

Figure 111: The same planet turned to show the silhouette. To the
left is the part of the planet facing away from the viewer, and to the
right the part facing the viewer.

16.1.3 Visual perception

Alternative error metric are related to the nature of our visual ca-
pabilities. Objects placed in the periphery of our field of vision
contributes less to the perceived image. If the viewer is moving

17 TEST AND ANALYSIS 51

fast, they would contribute even less, since they will more relatively
more in the field of view, than would objects at the center of view,
so they could therefor be prioritized lower.

17 Test and analysis

Throughout this paper, we have tried to show by example how the
methods that we describe can be used to solve the problem of gen-
erating an artificial world. Therefor we have in a sense shown that
the methods do in fact work and even when they sometimes do not
work quite as well as one would have liked. Much of the testing is
therefore located elsewhere along with the explanation of how the
results were obtained.

This section provides a few extra tests and benchmarks which have
been neglected until now.

17.1 Frame coherence

Whether split-and-merge outperforms split-only section 6 depends
mainly on how much the bin tree changes from frame to frame.

A mesh with 50 000 leaf triangles were used for testing. Such a
mesh is stored in a bintree with approximately 100 000 triangles.
High Frame coherence means that the bin tree is changed very little
from frame to frame. We tested fast and slow flight at high and low
altitudes and the results were promising.

We count change in a tree as nodes which exist in only one of the
two trees. Both leafs and intermediate nodes are counted. If a node
is moved from one location to another, then that will result in two
changes. One removal and one insertion.

High altitude low velocity A flight at 100 km above ground
level with a velocity of 200 kph resulted in a change in the tree of
300 to 400 depending of the terrain underneath. That is less than
one half of percent.

High altitude very high velocity A flight of 100 km above
ground level with a velocity of 20 000 000 kph resulted in a change
of 20 000 to 28 000. This is a large change of almost 30 percent.

Low altitude low velocity A flight at 100 m above ground level
with a velocity of 200 kph caused a change of 2 700 to 3 200, which
is less than 4 percent.

Low altitude very high velocity A flight 100m above ground
with a velocity of 20 000 000 kph resulted in a change of 200 000.
This is a completely new tree.

The frame coherence conclusion It is clear that when the
movement is not insanely fast then there really is a high degree
of frame coherence. The entirely new tree at the fast flight close to
ground, is what could be expected, but at the same time, even that is
acceptable since no fine terrain details will be visible at that speed,
so a very rough mesh will be acceptable.

For a large mesh the tree changes very little from frame to frame,
and it is very wasteful to rebuild the entire tree each time, when a
change of 4% is sufficient to obtain an optimal mesh.

17 TEST AND ANALYSIS 52

17.2 Multiple threads

We decoupled the rendering from the mesh optimization to let a
computer with multi core processor utilize all its powers, which
would not be possible with a single thread. The performance on two
systems with identical memory and graphics card were compared.

SINGLE - 3.2GHz single core, Galaxy GF6800, 1GB RAM
DUAL - 3.0GHz dual core, Galaxy GF6800, 1GB RAM

The test showed that a mesh with 100 000 visible triangles rendered
with 15FPS and 1.5 UPS (optimizations per second) on SINGLE
while it was 60FPS and 3.2UPS on DUAL. This relationship of
double UPS on a dual core and more than double frame rate on a
single core was quite constant during all tests.

The multi thread conclusion While previous single thread or-
dinary ROAM implementations would not use more than one core,
we clearly use both, and with a high degree of efficiency.

17.3 Fractal terrain generating algorithm

A problem, though we elsewhere talk about this as being a desirable
attribute, with the midpoint displacement algorithm is that when a
point is offset into its position, it never again moves. This is good
because it should not move around, but it is bad because the initial
position is selected based on only the previous subdivisions. This
means that the positions selected early on in the subdivision can
have a profound, too profound, impact on the final mesh. As seen
in Figure 18, the early displacements form dominant features in the
terrain. This is shown on a real terrain, as seen from above, in Fig-
ure 112 This is very prominent in our terrain, when, by chance, a
large early displacement is followed by a few small displacement.
Generally speaking, a displacement in level 0 can be influenced
fairly strongly on level 1, but from level 1 and downwards the dis-
placements will be too weak to make much of a difference, and
the original large displacement will end up forming a very straight
ridge or groove. The more the maximal offset is diminished each
step, the stronger this effect is.

Figure 112: A terrain with visible ridges from early midpoint dis-
placementsw

While ridges can be good, the ridges from bad midpoint displace-
ment are certainly bad. They appear very unnatural with their
straight lines which are arranged in a grid of lines at 45 degree
offsets.

A comparison with a landscape generated from Perlin noise and not
midpoint displacement shows no ridges.

Figure 113: A terrain generated with Perlin noise and not showing
any visible ridgesw

17.4 Effect of different number of triangles

The more triangles in the landscape, the more work is required for
each update. The question is how much of a difference it really
makes to double the number of triangles. Figure 114 shows the
same scene with four different resolutions. From top to bottom, the
triangle count is 100 000 50 000 25 000 and 5 000. While it is
evident that the highest triangle count does provide the best visual
experience, it is not that much of a different from 100 000 to 50
000. Even the low resolution view is reasonable. It is generally
more pleasing to have a smooth and high frame rate than having a
pretty terrain which can not be drawn and updated at a reasonable
speed.

This observation falls well in thread with the following quotation.

Today the absolute number of triangles is not as
important. As of 2003, games such as "Unreal 2"
have been released which render up to 200 000
triangles per frame. An attractive terrain
triangulation takes some 10 000 triangles. This
means that it is no longer important if we need
10 000 or 20 000 triangles for the terrain mesh as
long as it is done fast enough.
Daniel Wagner, GameDev

The terrain looks better the more triangles is used, but unless the
terrain is static, we have more need for speed in rendering and op-
timization.

17 TEST AND ANALYSIS 53

Figure 114: Four identical views with different number of triangles.
From top to bottom, the triangle count is 100 000, 5 000, 25 000 and
5 000w

17.5 Visible triangles

The way ROAM works means that all the triangles in the mesh
are woven together as a whole. You can not optimize one section

without influencing the rest of the mesh to some degree.

Figure 115 shows a planet which has been optimized for a view
point close to the surface and looking ”north”. As expected the
detail level of the mesh drops off sharply when it is not inside the
view frustum. Only 612 triangles, out of a mesh with 100 000 tri-
angles, are outside the visible area. When looking at a planet from
a distance, where the entire planet is contained in the view frustum,
then naturally no triangles are wasted outside what is seen, but even
when moving very close to the terrain, we see that the number of tri-
angles outside the view frustum, for a 100 000 triangle mesh, never
became larger than 800. This shows that even though ROAM does
waste triangles on areas which are clearly not visible, this waste is
very small.

Figure 115: An outside view of the mesh being optimized for a
view point close to the planets surface

19 FUTURE WORK 54

18 Conclusion

We found that it is not that difficult to quickly implement a planet
sized mesh with CLOD and a decent visualization of the terrain
types. While we didn’t have the time to implement real split and
merge, tests showed us that given the degree of frame coherence
that we measured, split-and-merge would speed up the optimization
significantly compared to split-only.

The fractal generation clearly needs more than simple midpoint dis-
placement. All too often distinct ridges and grooves were visible in
the landscape. Even if midpoint displacement was assisted by some
of the other simple landscape generating functions, the ridges will
most likely show up again.

Decoupling mesh optimization and rendering was a clear success.
The old style ROAM is quite difficult to properly split into parallel
processing, but by at least separating rendering and optimization, a
system with more than one core would always gain speed compared
to a single thread implementation.

ROAM is getting old We feel that ROAM is becoming an out-
dated algorithm which was clearly designed to work in a single
thread and on the CPU. With the recent developments in landscape
generating algorithms, ROAM is starting to look old. It can not be
moved to the GPU and it is not good for multiprocessing systems.
This means that one has to struggle with moving the mesh to the
GPU every time it is changed, rather than leaving it there for some
length of time, and it means that modern computers will not benefit
from their extra processors.

If we were to do this project again, we would clearly choose an al-
gorithm which is more suited for GPU processing. When the mesh
remains on the GPU, one can render a very suboptimal mesh with
very simple error metrics, and still get good results, simply because
one can use many more triangles.

Fractal terrain generation We realized that midpoint displace-
ment is not really suitable for triangle meshes. Ridges or creases
are a very common artifact of that combination, and there is no real
easy solution to the problem.

19 Future work

It would be interesting to see how ROAM could be implemented
to run on the new geometry shaders, where the algorithm might be
able to exist entirely on the GPU, which would allow it to work very
fast and without constantly moving large meshes across the bus.

Another interesting thing to work with is artificial life in a proce-
durally generated world with CLOD. As with rivers, the creatures
living in the world can move around and interact without the need to
generating the entire world. Only the regions of the world near by
need be detailed. It would be interesting to dive into such a world,
and observe a group of BOID-like creatures roaming around.

An obvious thing that needs more experimentation is the genera-
tion of an entire universe. How well can one generate galaxies, and
visualize them, through hashing and procedural algorithms? Could
the universe be populated by civilizations which would change their
status based on the passing of time, and only spring into live detail
when a lonely space traveler arrives at their planet? That way a civ-
ilizations current state, when the traveler arrives, would be defined
by the arrival time and yet another pseudo random number. Only

if the traveler actively changes the civilization, the system needs to
store detailed state information.

In broad terms, the future work is about testing the boundaries.
How photo realistic can the universe be, how detailed can the in-
ner workings become and how large?

LIST OF FIGURES 55

List of Figures

1 Planetary landscape with continuous level of detail,
rendered real-time 1

2 Showing same model with different Levels of Detail3
3 Showing models with different Levels of Detail at

different distance 3
4 Showing View dependent LOD 4
5 Showing the distant, large mountain and the nearer,

smaller pyramid 5
6 The standard ROAM triangle 5
7 Different subdivision levels [Duchaineau et al. 1997]6
8 Cracks in a mesh which was not recursively split

[Luebke 2003] . 6
9 Recusive triangle splitting [Duchaineau et al. 1997] 6
10 Splitting and merging with ROAM [Duchaineau

et al. 1997] . 7
11 ROAM subdivision in 8 steps 8
12 A binary triangle tree containing a ROAM 8
13 Triangles ordered as strip or list10
14 A winding, but ordered, way through the ROAM .10
15 Projected ROAM error [Duchaineau et al. 1997] . .11
16 A minimal bounding sphere for a right angled

isosceles triangle12
17 The bounds being broken by subdivision13
18 The bounds being broken by subdivision13
19 Naive placement of near and far clipping planes for

arbitrary geometry 14
20 Almost optimal placement of near and far clipping

planes for arbitrary geometry, taking into account
that not all the geometry is inside the view field . .14

21 Optimal placement of near and far clipping planes
for a sphere which is partially outside the view
field. The green line is the line of site for the hori-
zon point . 15

22 The optimal near and far clipping points for a view
frustum observing a sphere. The near clipping point
A’ is A projected onto the view vector and A is
the intersection of the view frustum and the sphere.
The far clipping point B’ is B projected onto the
view vector and B is the point where the vector
from the eye is the spheres tangent15

23 The intersection points of a view frustum and a sphere15
24 Height map and resulting mesh17
25 One level of midpoint displacement[Polack 2003] .18
26 Midpoint Displacement at level one19
27 Midpoint Displacement at level two19
28 Midpoint Displacement at level four19
29 Midpoint Displacement at level six19
30 A different midpoint for spheres19
31 Fault line with 1024 faults 20
32 Fault line with 1024 faults and average smoothing

of size 100 . 20
33 Fault line with 1024 faults and average smoothing

of size 1000 . 20
34 One fractal function generated using midpoint dis-

placement,F1 . 21
35 One fractal function generated using midpoint dis-

placement,F2 . 21
36 One multi fractal function generated by multiplying

F1 andF2 . 21
37 Ordinary Perlin noise21
38 The absolute value of Perlin noise. The valleys are

now sharply defined and no longer rounded21
39 The inverted perling noises absolute value, which

makes the valleys into sharp ridges21

40 Midpoint displacement not behaving well when im-
plemented as a ridged function. The midpoint M
between A and B is moved up to a positive value,
without generating any ridges. The function is
more flat than before.21

41 A scene showing ridged terrain from MojoWorld .22
42 Midpoint displacement working correctly together

with ridges. The dotted line represents the original
data generated by midpoint displacement, while the
solid line is the ridged version.22

43 Perlin noise used to generate an image. Linear in-
terpolation was used22

44 Perlin noise used to generate an image. Cosine in-
terpolation was used22

45 Noise function,n(x) 25
46 Designed function, or rather predefined samples in

x, d(x) . 25
47 Scaling function,s(x) 25
48 Sum of scaled functions,n(x)(1−s(x)+d(x)s(x) . 25
49 Blending performed with three types of blend func-

tionsw . 26
50 Midpoint displaced values in red, design in green

and combination in blue26
51 Design space and it projection to a sphere27
52 Closeup of blocks caused by pointsampling. The

colors are defined to be the normal vectors to better
show the form of the mesh27

53 Closeup of bilinear sampling showing no blocks.
The colors are defined to be the normal vectors to
better show the form of the mesh28

54 The bilinear resampling28
55 A very rudimentary design for a meteor crater con-

taining only the outer rim and the central point . . .28
56 A crater blended into a terrain at three different lev-

els. From top to bottom the blend is 1.0 0.5 and 0.1w 29
57 A crater blended into a terrain at three different lev-

els. From top to bottom the blend is 1.0 0.5 and 0.1w 29
58 Manually generated height map used as designw . 30
59 Design merged with noise, using the smooth blend

function. It is apparent that the resulting landscape
is never entirely equal to the design, though it is
very close around the center, where the blend func-
tion gives heigh weight to the designw 30

60 Design merged with noise, using the blend function
with a central area totally dominated by the design.
You can clearly see that the E and S are not influ-
enced by the noise function, but are entirely defined
by the designw 30

61 Design should be visible, but the triangles, which
are to be transformed into the design, are not30

62 Design is becoming visible when we do an extra
subdivision. Note that this is not the same terrain
as in Figure 61 31

63 Design can be distorted when angle of ”impact” is
very low . 31

64 Four levels of zoom into a lonely river on a plan-
ets surface. The first image shows how rough the
surroundings of a river can be, while the last one
shows the flow of a river which ends up filling an
irregularly shaped lake34

65 Twelve discrete steps in flowing water35
66 The calculated path of a river in a 3D landscape,

showing both the winding flow and river basins fill-
ing upw . 35

67 A mesh optimized by flow calculation for a river . .36

LIST OF FIGURES 56

68 A river forms a system of interconnected lakes . . .36
69 Two lakes are created by and connected through a

single river . 36
70 A river flows through the landscape, forms a single

lake and then moves on till it reaches the oceanw . 36
71 Two different bounding areas for the same collec-

tion of points . 37
72 The principal axis, and unit sphere, for a group of

3D positions . 37
73 A lake with no visible inlet or outlet 38
74 A lake with both an inlet and an outletw 38
75 The ground a muddy color under water. The light is

also made more ambient to simulate the scattering
effect of the water and particles therein39

76 Looking towards the day break. The sky is starting
to become more bright and blue in the lower right
corner, but the stars are still slightly visible, more
so when looking away from the lightw 39

77 The sun is back on the sky, and we can no longer
see the stars. Only the clear blue sky is visiblew . 40

78 From a position high above the atmosphere, it looks
like a semi transparent layer of air. This is not very
realistic, but it shows that the atmosphere can eas-
ily look very different depending on the observers
positionw . 40

79 The atmosphere is colored white, but the alpha
component is defined by a noise function to emu-
late cloud coverw 40

80 Vertex normal calculated as average of surrounding
triangle normals 40

81 Artifacts from Phong shading a ROAM generated
mesh . 41

82 Demonstrating how Phong lighting a pyramid will
generate artifacts which are in no way looking smooth41

83 Landscape with plenty of pyramids and no attempt
to hide them . 42

84 Landscape with plenty of pyramids which are made
less apparent by blending the vertex normals with
a vertical normal vector to simulate ambient light
which changes across the face of the spherical planet42

85 A surface can be in darkness even though it is fac-
ing the light . 42

86 Terrain colored based only on its altitude43
87 A terrain is colored according to its altitude. The

colors are noticeably arranged in bands where the
border between two colors are at one specific altitude.43

88 A terrain is colored according to its altitude and it
is clear that the borders between colors follow the
contour lines. 43

89 A terrain is colored according to its altitude and a
noise offset which perturbs the color selection, so
the border between colors no longer occur at spe-
cific altitudes, though snow is still dominant at high
altitudes, water is below a certain altitude, and grass
is dominant at the lower areas.43

90 A terrain is colored according to its altitude and an
extra noise function which perturb the altitudes. It
is now clear that the borders between colors do not
entirely follow the contour lines. 44

91 A terrain is colored according to its altitude44
92 A terrain is colored according to its altitude where

the altitude is perturbed by a noise function before a
color is selected. The perturbation is low frequency
and with medium amplitude44

93 A terrain is colored according to its altitude where
the altitude is perturbed by a noise function before
a color is selected. The perturbation is medium fre-
quency and with medium amplitude44

94 A terrain is colored according to its altitude where
the altitude is perturbed by a noise function before
a color is selected. The perturbation is high fre-
quency and with low amplitude45

95 A terrain is colored according to altitude and its
gradient along with another noise function. On
slopes facing ”left” there will sometimes be patches
of light green grass, when the noise function also
allows it. 45

96 An ocean is colored according to its latitude and
only the latitude. Over a certain latitude, the ocean
is frozen, and rendered as white ice45

97 An ocean is colored according to its latitude and a
noise function. Over a certain latitude plus minus
noise, the ocean is frozen, and rendered as white ice45

98 Even textures which tile seamlessly generates pat-
terns when used on a large scale46

99 Tileable textures can be used if they are very homo-
geneous .46

100 A line artifact from singular U-texture coordinates
and a noise texture46

101 Texture coordinates selected for the six sides of a
cube. It is shown unfolded inside the texture47

102 A terrain is textured with white noise, which
changes the brightness of the terrain relative to the
texture . 47

103 A terrain is textured with white noise, which
changes the brightness of the terrain relative to the
texture . 47

104 A very close view of a terrain textured with white
noise, which changes the brightness of the terrain
relative to the texture47

105 Bounded triangle mistakenly considered partially
inside view frustum 48

106 Adding more clip planes reduces false positive tri-
angles . 48

107 Finding the intersection between the surface of the
ocean and the terrain is an ill-conditioned problem.
The brown line is the terrain the green line is ap-
proximating and the blue line is the ocean.49

108 The triangles spanning the coast line have high pri-
ority and are subdivided more than triangles which
are entirely on land or entirely in the ocean. The
coast is drawn in a yellowish colorw 49

109 If the distance between sample points A and B is
too large, then a coast line can potentially be missed
when both are above or below sea level. If a third
sample point C was added at the midpoint then the
ocean would be correctly detected.50

110 The planets silhouette has a higher LOD to make it
appear round. .50

111 The same planet turned to show the silhouette. To
the left is the part of the planet facing away from
the viewer, and to the right the part facing the viewer.50

112 A terrain with visible ridges from early midpoint
displacementsw 52

113 A terrain generated with Perlin noise and not show-
ing any visible ridgesw 52

114 Four identical views with different number of trian-
gles. From top to bottom, the triangle count is 100
000, 5 000, 25 000 and 5 000w 53

LIST OF TABLES 57

115 An outside view of the mesh being optimized for a
view point close to the planets surface53

116 Blending performed with three types of blend func-
tions . 60

117 Design merged with noise, using the smooth blend
function. It is apparent that the resulting landscape
is never entirely equal to the design, though it is
very close arround the center, where the blend func-
tion gives heigh weight to the design.61

118 Design merged with noise, using the blend function
with a central area totally dominated by the design.
You can clearly see that the E and S are not influ-
enced by the noise function, but are entirely defined
by the design . 61

119 A pre-designed ”crater” was blended with a noise
function. The crater was a wide stroke circle which
had been smoothed slightly to give it more rounded
edges. The blend function was turned somewhat
down, in order to not let the design become too
dominant. A somewhat realistically looking noisy
crater is clearly visible, and it blends perfectly with
the landscape. The designed crater model was very
simplistic which may have resulted in too tall sides.62

120 A crater blended into a terrain at three different lev-
els. From top to bottom the blend is 1.0 0.5 and 0.163

121 A crater blended into a terrain at three different lev-
els. From top to bottom the blend is 1.0 0.5 and 0.164

122 The calculated path of a river in a 3D landscape,
showing both the winding flow and river basins fill-
ing up . 65

123 A river flows through the landscape, forms a single
lake and then moves on till it reaches the ocean . .66

124 A lake with both an inlet and an outlet67
125 Looking towards the day break. The sky is starting

to become more bright and blue in the lower right
corner, but the stars are still slightly visible, more
so when looking away from the light68

126 The sun is back on the sky, and we can no longer
see the stars. Only the clear blue sky is visible . . .69

127 From a position high above the atmosphere, it looks
like a semi transparent layer of air. This is not very
realistic, but it shows that the atmosphere can eas-
ily look very different depending on the observers
position . 70

128 The atmosphere is colored white, but the alpha
component is defined by a noise function to emu-
late cloud cover. 71

129 A terrain is colored according to its altitude. The
colors are noticeably arranged in bands where the
border between two colors are at one specific altitude.72

130 A terrain is colored according to its altitude and it
is clear that the borders between colors follow the
contour lines. 72

131 A terrain is colored according to its altitude and a
noise texture which perturbs the color selection, so
the border between colors no longer occur at spe-
cific altitudes, though snow is still dominant at high
altitudes, water is below a certain altitude, and grass
is dominant at the lower areas.73

132 A terrain is colored according to its altitude and an
extra noise function which pertubs the altitudes. It
is now clear that the borders between colors do not
entirely follow the contour lines. 74

133 One noise function defined the altitude of the ter-
rain and another noise influenced certain terrain
characteristics in order to create irregularly shaped
muddy areas in the lowland.75

134 A terrain is colored according to altitude and its
gradient along with another noise function. On
slopes facing ”left” there will sometimes be patches
of light green grass, when the noise function also
allows it. 76

135 Four identical views with different number of trian-
gles. From top to bottom, the triangle count is 100
000, 50 000, 25 000 and 5 00077

136 A terrain with visible ridges from early midpoint
displacementsw 78

137 A terrain generated with Perlin noise and not show-
ing any vissible ridges 79

138 The triangles spanning the coast line have high pri-
ority and are subdivided more than triangles which
are entirely on land or entirely in the ocean80

List of Tables

1 A distant large object and a near small object pro-
jected to same screen size with constant Level of
Detail . 5

Listings

1 Pseudo code for optimization by splitting 6
2 Pseudo code for Midpoint Displacment18
3 Pseudo code for fault line algorithm20
4 Hashing with permutation tables24

REFERENCES 58

References

ARTS, E., 2006. http://www.spore.com/. web page.

BELHADJ, F., AND AUDIBERT, P. 2005. Modeling landscapes
with ridges and rivers: bottom up approach. InGRAPHITE ’05:
Proceedings of the 3rd international conference on Computer
graphics and interactive techniques in Australasia and South
East Asia.

BRADLEY, D. 2003. Evaluation of Real-Time Continuous Terrain
Level of Detail Algorithms. PhD thesis, Carleton University.

CLARK , J. H. 1976. Hierarchical geometric models for visible
surface algorithms.Commun. ACM.

COSMAN, A., AND SCHUMACKER, R. 1981. System strategies
to optimize cig image content. InProceedings of 1981 Image II
Conference.

DUCHAINEAU , M., WOLINSKY, M., SIGETI, D. E., MILLER ,
M. C., ALDRICH, C., AND M INEEV-WEINSTEIN, M. B. 1997.
Roaming terrain: real-time optimally adapting meshes. InVIS
’97: Proceedings of the 8th conference on Visualization ’97.

DUCHAINEAU , M., 2006. http://www.cognigraph.com/roamhomepage/roam2.
Web page.

EBERT, D. S. 2003. Texturing and Modeling - A Procedural Ap-
proach 3.Ed.Morgan Kaufmann.

ELIAS , H., 2006. http://freespace.virgin.net/hugo.elias/models/mperlin.htm.
Web page.

ELITE, 1984. http://www.frontier.co.uk/. web page.

GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G. 2003.
Real-time procedural generation of ‘pseudo infinite’ cities. In
GRAPHITE ’03: Proceedings of the 1st international conference
on Computer graphics and interactive techniques in Australasia
and South East Asia.

HOPPE, H. 1996. Progressive meshes. InSIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on Computer graphics
and interactive techniques.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. InSIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive techniques.

J. S. FALBY, M. J. ZYDA , D. R. P., AND MACKEY, R. L.,
1993. Npsnet: Hierarchical data structures for real-time three-
dimensional visual simulation.

KELLEY, A. D., MALIN , M. C., AND NIELSON, G. M. 1988. Ter-
rain simulation using a model of stream erosion. InSIGGRAPH
’88: Proceedings of the 15th annual conference on Computer
graphics and interactive techniques.

LAGAE, A., AND DUTRÉ, P. 2006. Long period hash functions
for procedural texturing. InVision, Modeling, and Visualization
2006.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail ren-
dering using cached geometry. InVIS ’02: Proceedings of the
conference on Visualization ’02.

L INDSTROM, P.,AND PASCUCCI, V. 2002. Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization.IEEE Transactions on Visualization and Computer
Graphics.

L INDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F.,
FAUST, N., AND TURNER, G. A. 1996. Real-time, continu-
ous level of detail rendering of height fields. InSIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques.

LI NDSTROM, P., HOLLER, D., HODGES, L. F., RIBARSKY, W.,
FAUST, N., AND TURNER, G. 95. Level-of-detail manage-
ment for real-time rendering of phototextured terrain. Tech. rep.,
Georgia Institute of Technology.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. InSIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers.

LUEBKE, D. 2003. Level of Detail for 3D Graphics. Morgan
Kaufmann.

MACIEL , P. W. C.,AND SHIRLEY, P. 1995. Visual navigation of
large environments using textured clusters. InSI3D ’95: Pro-
ceedings of the 1995 symposium on Interactive 3D graphics.

MANDELBROT, B. B. 1977. Fractals : form, chance, and dimen-
sion. Freeman.

MANDELBROT, B. B. 1983.The fractal geometry of nature. Free-
man.

MUSGRAVE, F. K., AND MANDELBROT, B. B. 1991. The art of
fractal landscapes.IBM J. Res. Dev..

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989. The
synthesis and rendering of eroded fractal terrains. InSIGGRAPH
’89: Proceedings of the 16th annual conference on Computer
graphics and interactive techniques.

MUSGRAVE, K., 2006. http://www.pandromeda.com/. web page.

NISHIMORI, H., AND OUCHI, N. 1993. Formation of ripple pat-
terns and dunes by wind-blown sand.The American Physical
Society.

2006. http://en.wikipedia.org/wiki/colorsof noise. Web page.

OLANO , T. M., AND YOO, T. S.1993. Precision normals (beyond
phong). Tech. rep., Department of Computer Science, University
of North Carolina.

OLSEN, J., 2004. Realtime procedural terrain generation. Web
page.

PARISH, Y. I. H., AND MüLLER, P. 2001. Procedural mod-
eling of cities. InSIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques.

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. In
SIGGRAPH ’89: Proceedings of the 16th annual conference on
Computer graphics and interactive techniques.

PERLIN, K. 1985. An image synthesizer. InSIGGRAPH ’85: Pro-
ceedings of the 12th annual conference on Computer graphics
and interactive techniques.

PERLIN, K., 2006. http://mrl.nyu.edu/ perlin/. Web page.

POLACK , T. 2003. Focus on 3D Terrain Programming. The Pre-
mier Press.

PRUSINKIEWICZ, P.,AND HAMMEL , M. 1993. A fractal model of
mountains with rivers. InProceeding of Graphics Interface ’93.

REEVES, W. T. 1983. Particle systems-a technique for modeling
a class of fuzzy objects. InSIGGRAPH ’83: Proceedings of the

REFERENCES 59

10th annual conference on Computer graphics and interactive
techniques.

ROETTGER, S., HEIDRICH, W., AND SLUSSALLEK, P., 1998.
Real–time generation of continuous levels of detail for height
fields. Proc. 6th Int. Conf. in Central Europe on Computer
Graphics and Visualization 1998.

SNOOK, G. 2003. Real Time 3D Terrain Engines Using c++ And
Directx 9. Charles River Media.

TERRAGEN, 2006. http://www.planetside.co.uk/terragen/. web
page.

WATT, A. W. . M. 1992. Advanced Animation and Rendering
Techniques. Addision Wesley. Pages 23-27.

WEHOWSKY, A., 2001. Procedural generation of a 3d model
of mit campus. http://graphics.lcs.mit.edu/ seth/pubs/We-
howskyBMG.pdf.

YAN , J. K. 1985. Advances in computer generated imagery for
flight simulation.IEEE Computer Graphics and Applications.

A ENLARGED FIGURES 60

A Enlarged figures

Raw terrain Designed terrain

Square blend function

Cosine blend function

Trapez blend function

Figure 116: Blending performed with three types of blend functions

A ENLARGED FIGURES 61

Figure 117: Design merged with noise, using the smooth blend function. It is apparent that the resulting landscape is never entirely equal to
the design, though it is very close arround the center, where the blend function gives heigh weight to the design.

Figure 118: Design merged with noise, using the blend function with a central area totally dominated by the design. You can clearly see that
the E and S are not influenced by the noise function, but are entirely defined by the design

A ENLARGED FIGURES 62

Figure 119: A pre-designed ”crater” was blended with a noise function. The crater was a wide stroke circle which had been smoothed slightly
to give it more rounded edges. The blend function was turned somewhat down, in order to not let the design become too dominant. A
somewhat realistically looking noisy crater is clearly visible, and it blends perfectly with the landscape. The designed crater model was very
simplistic which may have resulted in too tall sides.

A ENLARGED FIGURES 63

Figure 120: A crater blended into a terrain at three different levels. From top to bottom the blend is 1.0 0.5 and 0.1

A ENLARGED FIGURES 64

Figure 121: A crater blended into a terrain at three different levels. From top to bottom the blend is 1.0 0.5 and 0.1

A ENLARGED FIGURES 65

Figure 122: The calculated path of a river in a 3D landscape, showing both the winding flow and river basins filling up

A ENLARGED FIGURES 66

Figure 123: A river flows through the landscape, forms a single lake and then moves on till it reaches the ocean

A ENLARGED FIGURES 67

Figure 124: A lake with both an inlet and an outlet

A ENLARGED FIGURES 68

Figure 125: Looking towards the day break. The sky is starting to become more bright and blue in the lower right corner, but the stars are
still slightly visible, more so when looking away from the light

A ENLARGED FIGURES 69

Figure 126: The sun is back on the sky, and we can no longer see the stars. Only the clear blue sky is visible

A ENLARGED FIGURES 70

Figure 127: From a position high above the atmosphere, it looks like a semi transparent layer of air. This is not very realistic, but it shows
that the atmosphere can easily look very different depending on the observers position

A ENLARGED FIGURES 71

Figure 128: The atmosphere is colored white, but the alpha component is defined by a noise function to emulate cloud cover.

A ENLARGED FIGURES 72

Figure 129: A terrain is colored according to its altitude. The colors are noticeably arranged in bands where the border between two colors
are at one specific altitude.

Figure 130: A terrain is colored according to its altitude and it is clear that the borders between colors follow the contour lines.

A ENLARGED FIGURES 73

Figure 131: A terrain is colored according to its altitude and a noise texture which perturbs the color selection, so the border between colors
no longer occur at specific altitudes, though snow is still dominant at high altitudes, water is below a certain altitude, and grass is dominant at
the lower areas.

A ENLARGED FIGURES 74

Figure 132: A terrain is colored according to its altitude and an extra noise function which pertubs the altitudes. It is now clear that the
borders between colors do not entirely follow the contour lines.

A ENLARGED FIGURES 75

Figure 133: One noise function defined the altitude of the terrain and another noise influenced certain terrain characteristics in order to create
irregularly shaped muddy areas in the lowland.

A ENLARGED FIGURES 76

Figure 134: A terrain is colored according to altitude and its gradient along with another noise function. On slopes facing ”left” there will
sometimes be patches of light green grass, when the noise function also allows it.

A ENLARGED FIGURES 77

Figure 135: Four identical views with different number of triangles. From top to bottom, the triangle count is 100 000, 50 000, 25 000 and 5
000

A ENLARGED FIGURES 78

Figure 136: A terrain with visible ridges from early midpoint displacementsw

A ENLARGED FIGURES 79

Figure 137: A terrain generated with Perlin noise and not showing any vissible ridges

A ENLARGED FIGURES 80

Figure 138: The triangles spanning the coast line have high priority and are subdivided more than triangles which are entirely on land or
entirely in the ocean

