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Abstract

In this work we simulate snow drift formation, as it is affected by a non-trivial wind
field. This could be to predict the drift formation in residential areas around houses and other
obstacles, or it could be to optimize the placing of snow drift fences in the landscape. The
granularity of the snow flow is abstracted away by viewing it as a non-Newtonian fluid flow.
This is done using a rheological material model, which is discretized using the Smoothed
Particle Hydrodynamics (SPH) method.

Simultaneously an Eulerian fluid flow field, representing the wind, is embedded in the
domain, and simulated using the Finite Volume Method.

To properly handle the interaction between the two methods, at their common interfaces,
we have developed a method, which lets the snow influence the wind field, and which lets the
wind field exert forces upon the snow.

There exist regions where snowfall, and the winds are commonly very strong. At such
regions it is very beneficial to be able to quickly determine if a new building may end up
changing the wind patterns, in such as way that extra snow will be deposited in undesirable
locations. Simulation may additionally assist in the optimal placement of snow fences.

We have no knowledge of snow drifting being simulated using SPH previously. While
models of flowing avalanches have often dealt with SPH, it appears to be a new method for
drifting snow.

We have collected or derived the the relevant material characteristics of snow, and im-
plemented a model with a more solid physical foundation than what is commonly seen in
computer graphics, dealing with the visualization of wind driven snow scenes. At the same
time it is a more general model than what is generally seen in snow engineering.

Our implementation of the snow simulator has been implemented in a massively parallel
fashion, and programmed in CUDA, in order for it to run on a GPU.
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2. Introduction

1 Motivation

Late in the winter 2010, the Danish island of
Bornholm was hit by a severe snow storm.
Over a the course of a few days more than
1.4 meters of snow fell. At the time of this
snow fall, a strong wind was blowing. This
combination resulted in snow drifts which
commonly measured more than 3 meters in
height and which at several locations were as
high as 6 meters. All roads were closed and
even in the cities, huge drifts were blocking
the streets for days.

Looking at images of this situation, it was
obvious that though much snow had fallen,
and though high winds were blowing, there
were great variations in snow depths and
drift sizes inside the cities, and on the coun-
try roads. At certain locations regular snow
traps were seen, and here the drifts reached
the 6 meters in height. When such a drift
was located across a road, it was a big prob-
lem, as seen in Figure 1 and Figure 2. When
it was away from houses and roads, it both-
ered no one.

Looking back, in Denmark in the 1980’s
and earlier, it was common practice to place
snow fences (section 12.9.4) of the type seen
in Figure 3 across fields to stop blowing
snow from moving farther downwind, and
potentially blocking a road. That practice
was later suspended, apparently due to a
long series of winters with little or no snow.

The placement of structures, such as houses
relative to dominant wind directions during
the winter, could make a difference in how
strongly affected a small city would be by
a snow storm. Also the optimal placement
of snow fences could mitigate the effect of

Figure 1: A road has finally been opened.
Notice the walls of snow at the side of the
road.[TV2 Bornholm]

snow drifting at the country side and let the
roads be less affected.

To the best of our knowledge, drifting snow
is not considered in house placement today,
and the location of snow fences, when used,
is based purely on rules of thumb such as de-
scribed in [Tabler, 1991]. We therefore see a
use for computer software, which can simu-
late the movement of snow, as it is affected
by the wind, and as the wind is affected
by the snow, in the presence of structures
such as buildings and snow fences. This
could help in the planning phase of combat-
ing drifting snow.

2 Introduction

This thesis consist of three major parts. First
we consider snow as just that, snow. We
look at how it is formed, its different types
and how the snow moves. After a brief ma-
terial mechanics introduction, we look at the
material properties of snow - how it relates

1



2. Introduction

Figure 2: Regular snowplows, large trucks
with front mounted plows, were unable to
go through the meter high drifts and ex-
cavation machines had to literally dig their
way through, one shovel load at a time.[TV2
Bornholm]

Figure 3: A snow fence placed on a field
to stop blowing snow from moving father
downwind.[expo-net.dk]

to external stress and when it deforms or
”breaks”. Following this, we look at how
the flow of snow can be modeled using rhe-
ology2, and how the snow is both a solid and
a flowing liquid, depending on the circum-
stances.

After this general snow investigation, we
introduce the Smoothed Particle Hydrody-
namics method, which is especially well
suited to simulate highly deformable materi-
als, such as wind blown, and flowing snow.
The model is a general model, and will be
introduced as such. Based on the knowledge
we now have about snow, and a method suit-
able for modeling deformable materials on a
computer, we describe a particle based snow
simulation method, and we verify its cor-
rect behavior in relation to our current un-
derstanding of how snow behaves.

The second part will be dealing with the sim-
ulation of moving air, by first introducing
computational fluid dynamics, namely the
Navier Stokes equations, and methods for
solving them. We will also briefly look at
the concept of turbulence. After introduc-
ing the basics, we will look at a method of
discretization for solving the fluid dynamics
equations on a computer. This is the Finite
Volume Method which is described in gen-
eral terms. Using the fluid dynamics knowl-
edge provided in the previous, we will con-
tinue on to develop a FVM fluid simulation,
and validate it by comparison with textbook
results, and results from commercially avail-
able simulation software.

The third and final part deals with cou-
pling the particle based simulation of snow
with the mesh based simulation of air move-

2The description of flow of ”solids”

2



2. Introduction

ment. We will describe a simple solution
to the wind-affects-snow and snow-affects-
wind problem. This coupling will then be
tested to see if the resulting behavior of wind
blown snow is realistic, which is the even-
tual goal of this project.

Following the main sections, we have a gen-
eral review and conclusion, which is fol-
lowed by an appendix. The appendix con-
tains some relevant material which did not
fit into the general flow of the three previous
parts of this thesis.

We have attempted to draw a sharp line be-
tween theory and method. The theory sec-
tions will introduce the relevant theory in
very general terms, while the method will
focus on what we have done to realize the
methods described, in the the context of our
snow simulation problem. This does make
the theory sections very general, but at the
same time it allows the theoretical strong
reader to skip to the method, while at the
same time allowing the theory sections to be
usable in other contexts than snow simula-
tion.

This text attempts to provide some intuition
for the reader unfamiliar with the subject.
Rather than simply stating a list of equa-
tions, we have tried to explain what those
equations mean, why that is so and how to
relate to this. This has contributed to making
the text slightly longer than the 100 pages
used as a rule of thumb, for this size of
project, but the hope is that the reader, al-
ready understanding these things, can read
that text quickly, and that the reader, who
does not already know it, will have an easier
time understanding the details, when helped
along with thorough explanations - thereby

also reading the text quickly.

2.1 The reader

The reader is expected to have a basic un-
derstanding of vector calculus, and the con-
cept of vector fields. The general idea be-
hind partial differential equations, and how
they can be solved numerically, should not
be too foreign, but detailed knowledge is not
a requirement.

Apart from this basic mathematical under-
standing, the reader should have a level
of understanding of Newtonian physics and
fluid dynamics at least at the level of an ad-
vanced high school graduate.

Prior knowledge of parallel programming
concepts, and especially General Purpose
GPU, GPGPU, programming, is not a re-
quirement, as it is introduced briefly in the
appendix, and is generally used at a some-
what basic level.

Subjects, not covered in the above men-
tioned prerequisite, will generally be ex-
plained in the text, or references will be
given to easily accessible sources of infor-
mation.

2.2 Symbols and units

The symbols used in this work are listed in
table 2.2. Along with the symbol, the name,
the SI unit and the first use in this text, will
be listed.

3



2. Introduction

Symbol Name Unit First use
ρ Density kg/m3 4.1
µ Viscosity Pa · s 4.2

µυ Bulk viscosity Pa 10.1
ε Strain 1 5.1
ε̇ Strain rate s−1 5.1.2
γ Shear strain 1 5.1
γ̇ Shear strain rate s−1 5.4
σ Stress Pa 5.2
τ Shear stress Pa 5.2
τY Yield shear stress Pa 6.9
E Young’s modulus Pa 5.2
Re Reynolds number 1 10.2
G Shear modulus Pa 5
υ Poisson’s ratio 1 5.2
p Pressure Pa 6.11
t Time s -

∆t Time step length s 8.7
u∗ Friction velocity m/s 4.3.2
u Velocity m/s -
c Speed of sound m/s 6.10
a Acceleration m/s2 -
F Force N -
f Force density N/m3 4.3.2
g Gravitational acceleration m/s2 -

CD Coefficient of drag 1 4.2
D Particle diameter mm 4.2
ν Kinematic viscosity m2/s 4.2
T Temperature C -
ε Integration error estimate Variable 9.6
u Displacement m 5.1

Figure 4: A list of commonly symbols used in this text. The symbol, its name and unit, as well
as first use, when at all relevant, is seen here.

4



3. Previous work

3 Previous work

In the field of computer generated imagery,
the creation, and rendering, of snow has
been of interest for some time. Particle-
based simulation of snow seems to come
naturally here, likely because it has the
added benefit of generating actual falling
snow flakes, which can be visualized while
snow is still in the process of settling. In
the simple end of the scale, we have falling
snow which deposits on any surface block-
ing the vertical fall. At the other end we have
detailed fluid simulation of the wind field, as
it carries the snow around the scene, before
finally depositing it.

In [Fearing, 2000] falling snow is simu-
lated with quite realistically looking results.
Snow is simulated as individual snow parti-
cles, each representing a single snow flake.
When the particle land on geometry, that
geometry is expanded upwards and colored
white in order to mimic the increased snow
depth. The resulting snow surface is often
too coarse to properly represent the true sur-
face, since the extruded geometry is not re-
fined enough. Wind is not represented here,
and the snow particles are in no way physi-
cally accurate, with any sort of real material
properties.

In [Saltvik et al., 2007] The Graphics Pro-
cessing Unit is used to simulate snow. Again
as particles. The scene is a mountain re-
gion of several square kilometers. The wind
field is calculated and solved, and the af-
fect of the wind on the snow is taken into
account, but the snow does not likewise af-
fect the wind. The particles have no material
properties other than drag and when they im-

pact with the ground, they are not moved by
the wind. instead a height map of snow is
manipulated.

In [Moeslund et al., 2005] wind and snow
are coupled for visualization. Individual
snow flakes are modeled and rendered, and
the snow is falling, and is carried by the
wind to form drifts. The snow flakes are
only simulated individually as they fall, and
upon impact with obstacles, or the ground,
they contribute to the raising of a triangle
mesh covering the existing geometry. The
snows effect on the wind does not seem to
be taken into account in this work.

In [Feldman and O’Brien, 2002] snow is
not represented by individual particles, but
rather as a snow density inside cells in a reg-
ular grid, which covers the entire scene. The
wind field is simulated, and the snow den-
sity is convected by the wind. Depending
on the wind speed, and the presence of ob-
stacles, snow may be deposited, or continue
to be carried with the wind. When snow
is deposited on an obstacle, or on snow al-
ready having been deposited, the slope of
the snow layer is checked to see if the snow
should slide into a lower neighboring loca-
tion or not. The final deposition of snow can
then be used to generate a snow height field
which can be rendered, or intermediate snow
fields can be used to dynamically change the
scene geometry used when calculating the
wind field.

The previous works have been focused on
generating realistically looking images of
snow in a scene, and the snow behavior has
been the result of hand tuning with arbitrary
values to define snow which has the correct
look. Other work is aimed at the engineer-
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ing field where accurate predictions of snow
depths and snow types are required in order
to issue avalanche warnings, or acquire fore-
knowledge of later melt-water flooding. A
brief selection of such engineering tools is
presented in the following.

3.1 Existing simulation tools

While several simulators have been devel-
oped as research projects, as referenced
throughout this paper, it seems evident that
very few snow drift simulators have been re-
leased to the public. There are simulators
which have been put to real use, but they are
certainly not of a type which is suitable for
small computer systems. Instead they are
built for clusters and intended for simula-
tions running for days ”Typical run time is
hours to days” [Lehning et al., 2006].

The tool SNOSIM
[USArmyCorpsOfEngineers, 1987] was
developed for the US army’s engineering
corps for prediction of snow accumulation,
and melting, at a particular location, the
Monongahela River Basin. The army’s
interest in that particular location was
because it was responsible for the control of
two general purpose reservoirs in that area.
The model is seemingly very detailed, but
at the same time, it is tailor made for that
single location.

Another tool is Alpine3D
[Lehning et al., 2006] which is designed to
predict snow accumulation for the Alpine
region in Europe. Predicting snow accu-
mulation lets the authorities issue early
avalanche warnings, and it gives them a
tool to perform virtual measurements of the

snow depth in different areas, where phys-
ical measurements could be difficult, due
to limited access. This more detailed snow
knowledge lets them trigger avalanches, at a
time of their own choosing, before civilians
are permitted in the dangerous areas.

Other tools exist for different detail levels,
but it seems they all have that in common,
that they are tailor made for a very specific
task, at a very specific region. It is also ev-
ident that the simulators are at a very dif-
ferent scale from what we are attempting in
our project, since the domain is entire river
basins, large areas of the Mongolian plains
or large mountain regions.

The smaller scales, of a few buildings or a
field with a couple of snow fences, is gener-
ally not simulated directly for snow accumu-
lation. The focus is more on the behavior of
wind, and how it directly affects structures
and people in the vicinity. The current state
of affairs is that small scale snow drifting is
estimated based on human experience and
guides such as [Tabler, 1991] in which the
experience is converted into a limited num-
ber of ”rules of thumb”.

A Norwegian simulator SNOW-SIM
[Bang et al., 1994] deals with snow drifting
around buildings, but not as a tool for
building design, but rather as a research
tool to further investigate the wind-snow
relationship and understand the detailed
behavior.

Validation of our implementation is there-
fore primarily based on relevant literature,
containing actual field measurements, as
well as those ”rules of thumb”. The results
from other academic, not publicly available,
simulators are also used for comparison.
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We contacted two engineers from DTU
Structural Engineering (Holger Koss, Asso-
ciate Professor, and Christos T. Georgakis,
Associate Professor) neither of whom could
mention a snow simulation tool in actual ev-
eryday use. Again there were mention of ac-
tive research, but no obvious product names.
Instead wind tunnels are being used, and for
this purpose the DTU/FORCE technology
wind tunnel is currently being refitted so it
can be used for tests involving ice and snow
[Georgakis, 2010].
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Part I

Snow

4 Snow

When water vapor crystallizes in a cold at-
mosphere, ice crystals form. These crystals
are initially very small and light, and can be
carried by even the smallest updrafts. Even-
tually the crystals grow to a size where the
gravitational pull will force them towards
the ground.

If the air temperature is below freezing
or close to it, the crystals will stay in-
tact until they land on the ground. If,
on the other hand, the lower layers of
air are warmer, the crystals may melt and
fall as rain. For more details on the
creation of snow particles we refer the
reader to [Cresseri and Jommi, 2005] and
[Piskova et al., 2008].

While snow is a very complex sub-
stance, it can generally be described rel-
atively well, under certain (many) as-
sumptions, as an viscoplastic material
[Cresseri and Jommi, 2005].

4.1 Shape of snow particles

Depending on the ambient temperature
where the crystal formation is taking place,
a couple of basic initial forms will be cre-
ated. They are plates, needles, columns and
dendrites [Piskova et al., 2008] Figure 5.

Obviously the different shapes and sizes

will have different aerodynamic, and me-
chanical properties, but as the snow falls,
melts and refreezes and eventually impacts
some solid surface, and is compressed by
gravity of blown by the wind, the indi-
vidual snow particles tend towards a com-
mon shape which is a granular material
[Cresseri and Jommi, 2005]. This granular
material consists of small round(ish) corns
of ice with varying density ρ depending on
grain sizes. The density, mass per unit vol-
ume, of the ice in the snow is equal to that
of ordinary ice, but the presence of air in be-
tween crystals make the snow density much
lower.

We will therefore in this project con-
sider snow particles as small spheres of
ice, when dealing with individual parti-
cles. When dealing with a collection of
particles, we will consider the snow as a
granular flowing material which can be ap-
proximated by a continuum as described in
[Cresseri and Jommi, 2005] and section 7.

4.2 The forces acting upon snow
particles

In [Zhang and Huang, 2008] the primary
forces acting on a particle are given as Fg be-
ing the gravitational pull downwards, and FD
which is the drag when the particle moves
relative to the wind. Additionally there exist
aerodynamic lift, Magnus forces, when the
particle rotates, and electrical forces. Only
the first two will be considered in this project
since it has been shown that while the last
three forces do exist, their effect is gener-
ally two orders of magnitude smaller than
the first two[Zhang and Huang, 2008].
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Figure 5: Depending on the ambient temper-
ature, and supersaturation, different shapes
and sized of snow particles will be created.
Figure from [Piskova et al., 2008]

Figure 6: A snow layer, drawn in yellow,
rests on an inclined surface in gray. The
gravitational acceleration pulls the snow ver-
tically down, but given the slope of the sur-
face, this force can be split into a shearing
and a compressive force.

The resulting vertical force Fg from
gravitational pull, and buoyancy from
the surrounding air, is defined in
[Zhang and Huang, 2008] as

Fg =
1
6

πD3
P(ρP−ρair)g (1)

where Dp is the particle diameter, g is the
gravitational acceleration, which is set to
9.82m/s, ρP is the density of the particle,
which is that of ice 900kg/m3, and ρair is
the density of the air.

As seen in Figure 4.2, the vertical gravita-
tional acceleration force will result in both
a force normal to the plane of the surface, a
compressive force, and a force tangential to
the plane of the surface, which is a shearing
force. More about those two forces in sec-
tion 5.

The drag is

Fd =
1
8

CDρπD2
Pu2 (2)

where CD is the coefficient of drag in air, ρair
is the density of air and u is the relative ve-
locity between the particle and the air.

The coefficient of drag is given by the fol-
lowing relation, which is commonly used
for spherical particles of various small sizes
[MIT, 2006, Nishimura and Sugiura, 1998].

CD =
24

Rep
+

6
1+
√

Rep
+0.4 (3)

Here Rep is the particle Reynolds number
which can be further defined as
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Rep =
Dp

ν
u (4)

where ν is the kinematic viscosity of the air.
A particle Reynolds number describes how
air (or some other fluid) flows around the
particle. For low Reynolds numbers Stokes
law can be used to calculate the drag while
high Reynolds numbers require a model tak-
ing turbulence into account.

We will use the particle size of 1mm
to somewhat match the common den-
sity of new snow at 80kg/m3 and
corresponding diameter described in
[Zhang and Huang, 2008] for new snow.
The density of the individual grain of snow
is naturally that of ice and not that of the
new fallen snow, which contains much
trapped air.

4.3 The different transport
modes of snow

There are three forms of wind induced snow
transportation [Zhang and Huang, 2008].
They are suspension, saltation and creeping.
Snow may also slide on surfaces, such as
inclined roofs, but this is primarily a gravity
induced motion.

Initially the snow is suspended in the air and
is carried with the air, as it itself moves. Af-
ter the snow has fallen, it may be moved by
creeping, which is when snow particles are
moved by the wind shear, but the particles
remain on the surface. They slide or roll on
top of the other snow particles.

Figure 7: Distribution of snow transport
in the two primary modes given wind
velocity. Note how transport starts at
5m/s and initially only consist of salta-
tion, as the wind speed increases, suspen-
sion will become a more equal partner in
snow movement. Figure reworked from
[Lieberherr and Parlange, 2010]

Saltation is a more energetic form of shear
driven movement whereby the particles are
ejected into the air by the wind, or other
impacting particles, and travels briefly with
the air before falling back to the snow sur-
face again. When impacting, the particle
may rebound, and it may knock other par-
ticles into the air and cause a steady flow of
bouncing particles near the surface. The pri-
mary form of snow transportation is salta-
tion [Meller, 1975, MIT, 2006] which is de-
picted in Figure 7.

The snow can transition from any of the
three modes into any of the other ones.

10



Part I - Snow 4. Snow

4.3.1 Suspension

Snow particles generally have a very high
drag to mass ratio. The individual flakes,
or corns, have a large surface area relative
to their mass, so they are greatly influenced
by changes in wind. Suspension is not the
snow transport which moves the most mass,
but it is the method by which the snow trav-
els the greatest distances. Additionally, it is
the method of transport which is initially in
effect and it should be considered in some
detail.

When snow is suspended in air, it has the
lowest density it will ever have. According
to [Meller, 1975] the density of a snow filled
air volume, in even the strongest blizzard,
is so close to that of pure air, that suspended
snow for all intents and purposes can be con-
sidered to have the viscosity and density of
the air. Given that the density is very close
to that of air, the suspended snow is not con-
sidered to be affecting the motion of the air
itself. The air, however, has a great influence
on the snow [Nishimura and Sugiura, 1998].

A particles susceptibility [MIT, 2006] de-
scribes how much it is affected by the wind,
relative to gravity. The higher the suscepti-
bility, the easier it is carried with the wind,
and prevented from falling straight to the
ground. This value of susceptibility (to wind
transport) is simply the relationship between
the force imparted by the wind Fwind and the
force from gravity Fgravity

susceptibility =
Fwind

Fgravity
(5)

The actual movement of the suspended par-

ticles is defined by the forces working on it
Fg and Fd section 4.2 and the motion of the
air. Close to the ground, and several meters
up, the air tends to be quite turbulent which
means that the wind movement is chaotic.
This in turn results in a chaotic and seem-
ingly random drag force on the particles,
which in turn gives the particle a chaotic mo-
tion.

4.3.2 Saltation

Initially there will be no saltation when a
slow wind blows over the snow surface.
Then at a certain limiting velocity, the wind
shear will set particles in motion, and the
saltation is initiated in a cascade like fash-
ion [MIT, 2006] until an equilibrium point
when the mass of saltating particles remains
constant. What this limiting velocity is, de-
pends on the particle Reynolds number Rep,
but no definite value seems to be given in the
literature.

The abruptness of this cascade depends
largely on how well sorted the particles are.
If they are of identical size, then, when first
started, saltation quickly reaches the equi-
librium. Very heterogeneous particle collec-
tions, on the other hand, builds up from the
initial start more slowly, since some particle
will be more prone to saltation than others.
This in turn means that with changing wind
speeds, the saltation will also be changing,
but with a delay.

According to [MIT, 2006] it is not com-
pletely understood what forces initiate and
drives saltation, but consensus is that it is
initiated by aerodynamic drag and lift, and
then driven by the same forces plus particles
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impacting each other, when returning to the
surface. Additionally, aerodynamic lift has
less of an effect on saltation than the impact
from other particles.

The saltation starts at, what is called the
aerodynamic threshold, and it stops at im-
pact threshold. The two domains overlap in
a large hysteresis region, so there is a large
span of air velocities where the particles may
equally well be be at rest and saltation.

While suspended snow has little influence
on the air, saltating particles have a strong
combined effect which acts as an increased
roughness of the surface. Every time
a particle is lifted into the wind, it ex-
tracts momentum from the air which is
in part deposited into the surface as im-
pact heat. The literature does not men-
tion this increased heat having any effect,
but the drag on the air is considered in
for example [Nishimura and Sugiura, 1998,
MIT, 2006, Zhang and Huang, 2008].

According to [Zhang and Huang, 2008], the
drag on the air in a saltating snow layer can
be described as

fx =−
d
dy

(
ρk2y2

[
du
dy

]2)
(6)

where fx is the horizontal force density,
force per unit volume, k is the dimension-
less Von Karman’s constant of 0.41, y is the
hight above the surface and u is the horizon-
tal wind speed. Note that while obviously
any relative movement between snow and
wind will result in drag, we are considering
a wind blowing tangential to the surface of

Figure 8: Friction velocity over a snow
layer based on wind speed. Figure from
[Nishimura and Sugiura, 1998]

the snow, which means that the wind veloc-
ity normal to the surface is negligible - when
not considering turbulence.

According to [MIT, 2006] the particles take-
off speed is around the same value as
the friction velocity, and the takeoff an-
gle is around 21◦ to 25◦. In experiments
[MIT, 2006] this speed has been measured
to 0.5m/s for a wind speed of 10m/s and it
has been reported that for wind speeds below
20m/s the relationship between wind speed
and friction velocity is somewhat linear

u∗ =
u

20
(7)

The term friction velocity, also called shear
velocity, using the symbol u∗, describes
the relationship between fluid induced shear
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Figure 9: Trajectory of particles during
saltation[MIT, 2006]

stress τ at a wall, and the fluid density ρ , in
the form of a velocity (8). The higher the
density, the less friction velocity is required
to account for the shear stress.

u∗ ≡
√

τ

ρ
(8)

According to [Zhang and Huang, 2008] the
number of ejected particles per unit area and
unit time can be modeled as

N = αe
u∗
β +λ (9)

where α = 0.083m, β = 0.19m/s and λ =
0.00052m.

It is not clear what size snow particles the
expression for ejected particles is valid for.
It appears that it is for a particle mix with
an average particle diameter D = 0.5mm and
no other diameters are explicitly mentioned.
We therefore make the assumption that is
it valid for all common snow particle sizes,
and use it as it is given.

We now rewrite it to give the mass ejected
from the surface per unit area and unit time,

here assuming a particle diameter, as the one
they report, and snow as being spherical ice
balls.

m =

(
4
3

π

[
D
2

]3

900kg/m3
)
(αe

u∗
β +λ )

(10)

It should emphasized that this relation is at
best a rough estimate and that it requires
a great deal of calibration to be accurate.
This is due to the assumption of entirely
loose snow and, on the fact that while fric-
tion velocity seems to depend linearly on
wind speed, this is an average. The higher
the wind speed, the more turbulence and the
more turbulence the larger variance of sur-
face wind speed and thereby friction veloc-
ity. What this means is that while the av-
erage friction velocity may develop linearly,
the variance does not, and it is those occa-
sional higher than average friction velocities
which rip up particles.

Performing the described calculations for a
friction velocity of 0.5m/s we get 3 particles
ejected per second per square meter. Note
that this ejection rate is for entirely loose
snow and that no relationship is given be-
tween density and ejection rate.

4.3.3 Creep

While suspended snow is important ini-
tially, when the snow falls, and while saltat-
ing snow is important when describing how
snow is primarily transported after falling,
creep is not important. It is commonly not
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modeled, since it accounts for so low a frac-
tion of the total snow transport. We briefly
touch upon its creeping properties in more
details in section 6.1.

4.3.4 Sublimation

Sublimation is the evaporation of the ice in
the snow directly into vapor form, without
first being liquid water.

In the model [Mott et al., 2010] they initially
ignore sublimation, claiming that it is ir-
relevant, while they later conclude that it
is in fact quite important, if the final ac-
cumulated snow mass is to be used. In
[Lieberherr and Parlange, 2010] they state
that the effect is in fact large, but only on
suspended snow.

While this should probably be implemented
in a model dealing with snow deposits, the
trouble with sublimation, and probably the
reason it is generally not included in snow
models, is that there are next to no details
about how the mass loss through sublima-
tion is to be calculated. It is clear that it is
wind speed related as well as it is dependent
on the humidity of the air and the temper-
ature of both the snow and the air. What is
not clear is exactly how those parameters are
related.

We considered to add a mass loss factor to
the snow, which should represent sublima-
tion. The factor should relate to the relative
speed of the air and the snow particles. That
was dropped because it would at best be a
hack, and because there would be no clear
cut way to test if the model was accurate or
not, given the lack of details about sublima-

tion. For that reason, we will recognize its
relative importance, but not implement it in
this project.

4.3.5 Sliding

Gravity induced sliding is commonly not
modeled, with the exception of avalanches.
The mass of snow, which can accumulate on
a sloped surface, does however depend on
sliding, so if this is relevant to the model,
then sliding should be included. In consid-
ering sliding, the static and dynamic friction
between the snow and the surface, on which
it rests, should be known. This is not mod-
eled in this project.

5 Introduction to material
properties

This section serves as a brief introduction to
material strength mechanics. We will touch
upon strain and stress and the related con-
cepts. We briefly look at what it is, and how
it is described. In order to relate strain and
stress we also look at Young’s elastic modu-
lus, shear modulus and Poisson’s ratio. We
will then look very briefly at friction and vis-
cosity. Any reader familiar with those topics
can safely skip this section.

5.1 Strain

Strain is a dimensionless number. It is de-
fined as the relative displacement between
particles inside an object. While a rigid body
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motion - a non deforming translation or ro-
tation - displaces particles in an object, the
relative displacement is zero.

Strain can therefore be described as change
in displacement over some direction at a
point.

If a 1D object, aligned with the x-axis, with
the initial length L, is stretched to the new
length l by keeping one end fixed while the
other is moved away, then it is strained, and
the strain is positive, while a similar com-
pression would be negative strain.

The different parts of the object have been
strained equally, though they have not been
displaced equally. The fixed end has not
moved, and its displacement u is zero. The
other end has been displaced l − L. This
means that displacement u changes along the
x-axis.

This can be be described though a contin-
uous displacement function x = X + u(X)
defining a continuous displacement field u
where x is the new position of the part of the
object previously located at X.

Strain can then be defined as ε = ∂u
∂x mean-

ing that it is dependent on how much the dis-
placement changes along the spatial dimen-
sions. That happens to be the x-axis here. In
the simple example, we assume that this rate
of change of displacement over the x-axis is
a constant and that there is not one particular
section of the object which stretches more
than the rest.

In three dimensions the strain cannot be de-
scribed using a single number. Not only is
there normal strain along x,y and z, but there
is shearing strain as well. This is described
through a 3x3 strain tensor.

Figure 10: Normal strain. The leftmost edge
is fixed, and the rightmost edge is moved to
the right along the X-axis. The fixed edge
is the X-plane since its normal vector is the
X-vector

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 (11)

The different components of the strain ten-
sor are normal strain and shear strain. Nor-
mal strain is a strain which acts normal to
the plane which it acts on, as seen in 2D
in Figure 10. Shear strain is a strain which
acts parallel to the plane which it acts on as
seen in Figure 11. Normal strain is compres-
sion or stretch along some axis while shear
strain is more of a skewing strain, commonly
arising from two surfaces grinding against
each other. Strain caused by friction is shear
strain.

The notation will be that strain acting on
plane α along the vector β is written as εαβ

By α-plane is meant the plane which has α

as its normal vector.

5.1.1 Calculating strain

There are several possible ways of calcu-
lating strain, which differ in how they well
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Figure 11: Shear strain. The bottom edge is
fixed and the top edge is moved to the right
along the X-axis. The fixed edge is the Y-
plane since its normal vector is the Y-vector

they handle large deformations. That is, if
strain is to be determined given an origi-
nal and a deformed material configuration,
and the two are very different, then special
methods such as the Green Lagrangian strain
tensor[Bonet and Wood, 2008], also known
as the large strain tensor, may have to be
used.

For small deformations, or for large defor-
mations taken in many in small steps, the di-
rect definition of strain as ∂u

∂x can be used.
That is commonly refereed to as the small
strain tensor or the Cauchy strain tensor
[Müller et al., 2008]. The reason that is is
only for small strain is that large strain will
rarely consist of a purely linear displacement
through the entire strain.

A rigid body rotation is an example where it
will fail. This is illustrated in Figure 12 and
Figure 13, where a square is rotated clock-
wise. In Figure 12 it is assumed that the mo-
tion of the corners does not change during
the ”deformation” and their initial motion is
extrapolated linearly into the future. The
result is a deformed, much larger, square.
In Figure 13, this linear behavior is not as-

sumed and instead the true circular motion
is used. This results in zero deformation and
thereby zero strain.

Cauchy strain will calculate strain as

εC =
1
2
(∇u+∇uT ) (12)

Note that while this tensor is for small strain,
it can be used for large strain in a time dis-
crete physical simulation, if that large strain
consist of small strain in each individual
simulation step and the material is not elastic
so that it has stress trying to return it to some
initial configuration. This is what is done
in [Paiva et al., 2009, Hosseini et al., 2007],
and this is what we will be doing.

5.1.2 Strain rate

While strain is relative deformation, strain
rate is relative deformation, or strain, over
time ∂ε

∂ t . Where strain is calculated from dis-
placement differentiated over space, strain
rate is calculated from velocity differenti-
ated over space, where velocity itself is dis-
placement differentiated over time. A com-
mon symbol for strain rate is ε̇ and the unit
is s−1.

We can calculate the strain rate at any point
from the gradient of the velocity field.

∇v =


∂vx
∂x

∂vx
∂y

∂vx
∂ z

∂vy
∂x

∂vy
∂y

∂vy
∂ z

∂vz
∂x

∂vz
∂y

∂vz
∂ z

 (13)
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Figure 12: Large strain from rigid body ro-
tation. The black square rotates and the red
lines are linear extrapolations of the corners
movement, while the blue lines are the true
circular motion of the corners. Note how
the ”rotated” figure, with linear extrapola-
tions of the corners make the square grow to
a much larger size - indicating large normal
strain.

Figure 13: Large strain from rigid body ro-
tation. The black square rotates and the red
lines are linear extrapolations of the corners
movement, while the blue lines are the true
circular motion of the corners. Note how the
rotated figure, using the true circular motion
of the corners, maintain the shape and size
of the original indicating zero strain.
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Given the gradient, we can calculate the
strain rate

ε̇ =
1
2
(∇v+∇vT ) (14)

5.2 Stress

Stress σ is the force per unit area inside a
deformable object. It is similar to strain in
that it is also defined by a 3x3 tensor relat-
ing its values to the coordinate system. It is
however here describing force per area, or
pressure, and has the unit of Pascal which in
turn is N/m2.

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (15)

If we consider an object subjected only to
normal strain, then the relationship between
strain and stress is defined by a material con-
stant known as Young’s elastic modulus des-
ignated E below.

σαα = Eεαα (16)

where the subscript αα designates the di-
agonal, which is the normal components of
stress and strain.

For more complicated deformation with
both normal and shear strain in 3D, Young’s
modulus is not enough to fully describe the
relationship. Here an elasticity tensor D can
instead be used

σ = Dε (17)

The elasticity tensor, also known as stiff-
ness tensor, D encapsulates several material
properties which can be described through
Young’s modulus E and Poisson’s ratio ν

[Müller et al., 2008]. In 3D it can be writ-
ten as

D =
E

(1+ν)(1−2ν)


1−ν ν ν 0 0 0

0 1−ν ν ν 0 0
0 0 1−ν ν ν 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν



In the previous, we used the two material
constants, Young’s modulus E and Pois-
son’s ratio ν . Young’s modulus describes
the stress strain relationship between normal
strain and normal stress, much the same way
as Hooks spring constant. Poisson’s ratio, on
the other hand, [Bonet and Wood, 2008] in-
troduces the relationship between how much
an object is compressed, or stretched along
one axis, and how much it bulges out or thins
in the plane orthogonal to that axis.

ν =−dεtransversal

dεaxial
(18)

An entirely incompressible material will
have a Poisson’s ratio of 0.5, which will
maintain volume through deformation. A
material which do not bulge out when com-
pressed, will have a ratio of 0. One example
of such an entirely compressible material is
cork, though that is naturally not true for an
arbitrarily high compression.

If an incompressible material, with Pois-
son’s ratio of 0.5, is subjected to compres-
sion along the y axis, it will bulge out in the
xz-plane.
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Part I - Snow 5. Introduction to material properties

ν =−dεxz

dεy

dεxz =−νdεy (19)

Shear stress Another common material
constant is the shear modulus G, which is
related to Young’s modulus E and Poisson’s
ratio ν .

G =
E

2(1+ν)
(20)

Looking at the definition of shear strain sec-
tion 5.1, it is clear that if a material is sub-
jected to normal strain, and bulges out to
the sides due to a non zero Poisson’s ratio,
then some shearing strain will result, and it’s
those shearing forces which causes the side-
ways movement of the material. At the same
time, we see that if a material is sheared,
then individual particles inside the material
will be pulled away from each other similar
to normal strain. Depending on the problem
being solved, the shear modulus or Young’s
modulus may be more appropriate to use.
Both of which should be in play when cal-
culating certain material properties such as
the speed of shock waves in section 6.10

5.3 Friction

Friction forces are forces which oppose the
movement of a material sliding over another
material. The friction between two slid-
ing objects will dissipate kinetic energy into
heat, and eventually cause the sliding ac-
tion to stop. There are two main variations

of friction which are static friction and dy-
namic friction, or kinetic friction. Static fric-
tion is the friction force resisting the initi-
ation of relative movement, while dynamic
friction is the force opposing current relative
movement.

The friction force depends on the normal
force Fn, which is the force pushing the
two sliding surfaces together, and the fric-
tion quotient µ which can be either the
static quotient µs or the dynamic quotient
µk. Commonly the normal force is related
directly to the mass of the sliding object and
the gravitational constant Fn = mg, but other
forces than gravity may be pushing the slid-
ing surfaces together.

The magnitude of the friction force is calcu-
lated as

|F | ≤ µFn (21)

5.4 Viscosity

Viscosity can be considered internal friction
in a fluid object. As the particles in a fluid
moves relative to each other, there is fric-
tion between them. This friction is described
through a viscosity parameter µ . Viscosity
also translates relative movement into heat,
eventually causing movement to cease.

Where ”normal” friction did not depend on
the speed of the relative motion, viscos-
ity forces do. The faster the movement,
the larger the viscosity forces, resisting that
movement, will be.

Relative movement in an incompressible, or
nearly incompressible, fluid will only take
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the form of shearing strain γ and the result-
ing viscosity forces will therefore be shear-
ing stress τ . The relationship between shear
stress τ , shear strain rate γ̇ and viscosity µ is
written as

τ = µγ̇ (22)

6 Mechanical properties of
snow

The mechanical properties of snow are
not easily defined, and no complete mate-
rial description currently exist. According
to [Meller, 1975] and [Piskova et al., 2008]
most of the general measurements were
performed early on during the 1940’s and
1950’s and after this, research tended to fo-
cus on either the fluid like properties of snow
during avalanches, or the motion of snow
due to wind forces.

In summary, most of the known material
properties of snow are limited to a very spe-
cific type of snow at a very specific tem-
perature range and a very specific snow
density. For this reason, snow simulations
tend to make a lot of assumptions about
the type of snow falling and the environ-
ment into which it falls. The common ap-
proach is to assume grain like snow corns,
variable density and constant temperature
[Cresseri and Jommi, 2005].

When simulating snow drifting, the trend is
to focus on the wind-induced motion of the
snow [Mott et al., 2010] and not on the me-
chanical behavior of snow itself. We also re-

alize the relative importance of the two sub-
jects, but still touch on the mechanical be-
havior since we feel it is relevant for a com-
plete description.

A model implementing both behaviors will
also be more versatile, and can be used for
a broader range of modeling tasks ranging
from falling snow, over drifting snow to slid-
ing or melting snow with what this brings of
trouble.

We will touch on the material properties of
snow here to make it clearer what behavior is
to be expected, and to motivate our choices
in the development of our SPH model.

6.1 A few simple observations
about snow

When falling, the snow consists of in-
dividual snow particles, snow flakes,
which generally do not bond together
when colliding. For snow to bond
quickly the temperature must be very
close to 0◦C [Piskova et al., 2008,
Lieberherr and Parlange, 2010].

This means that snow-fall consists of indi-
vidual irregularly shaped flakes, which will
trap a great deal of air between them when
they settle. This in turn results in a very low
density.

While the individual snow particle has
the density of ice, the collection of
loosely packed particles can have densi-
ties as low as 10 kg/m3. This type of
snow is generally called ”powder snow”
[Piskova et al., 2008]. The common density
for a solid bonded layer of snow is around
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300 kg/m3 [Meller, 1975], while the density
of newly settled snow is lower at 100 kg/m3.
The porosity p of snow can be easily de-
scribed by the following expression given in
[Piskova et al., 2008].

p =
ρice−ρsnow

ρice
(23)

where p is the porosity, ρice is the density
of ice and ρsnow is the density of the snow.
We see that a porosity of zero is snow in the
form of solid ice.

For the standard density of 300 kg/m3

for new, but settled, snow, this would
result in a porosity of (900kg/m3 −
300kg/m3)/900kg/m3 = 0.17 This means
that in such a snow cover, 83% of the vol-
ume is trapped air.

The warmer the snow is, the softer it is.
The lower the density is, the softer it is
[Cresseri and Jommi, 2005]. This indicates
that the mechanical strength constants such
as shear and bulk modulus are highly tem-
perature and density dependent. Keep in
mind that while the individual snow flake
has a structural strength independent of the
overall snow layers density, we are viewing
the collection of particles as a continuum,
and here the porosity plays a big role.

The next observation about snow behav-
ior is that when it is compressed, it stays
compressed. In other words, the de-
formation of snow is dominantly plastic
[Cresseri and Jommi, 2005], though it has a
very small elastic part. The higher the den-
sity, the greater the elastic part.

The snow behavior is often modeled as a

spring and dash-pot system where the spring
described the elastic part and the dash pot
the plastic part, but even this coupled model
does not capture the complex and nonlin-
ear behavior [Piskova et al., 2008]. We also
note that snow is more resistant to compres-
sive stress than to tensile (pulling) stress,
which can be seen by different strength con-
stants for the different types of stress. Mod-
els such as [Cresseri and Jommi, 2005] de-
scribes this by an viscoplastic model, which
seems to capture the general dynamics. In
[Meller, 1975] snow is, for low pressures
and densities, which is what we will be deal-
ing with, described as a plastic solid.

In general, snow can range in type from
large very soft, almost melted and glued
together, particles to very small individual
grains which do not stick together. It may
also be tightly packed and forming a rigid,
but very brittle, coherent structure.

When snow is left on its own accord, not
influenced by any outside stress, other than
gravity, it will slowly collapse and settle
at a rate of 1cm to 30cm a day, depend-
ing on ambient temperature and the hight of
the snow layer [Piskova et al., 2008]. This
is caused both by creep due to gravity and
by a change in the bonds between individ-
ual ice grains due to chemical water trans-
port. Over time ice bridges will form and
grow between initially un-bonded neighbor
ice grains [Cresseri and Jommi, 2005]. This
also has the effect that settled snow will
grow stronger and stronger, but if the snow
is the exited, the ice bridges break and the
snow will become, and remain, week un-
til the bonds are reformed. This makes the
strength of snow very strain history depen-
dent.
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Creep under loading, external or internal,
is given in [Meller, 1975], but we do not
model creep explicitly since we are more
concerned with the short term effects of
drifting snow, whereas creeping (in the form
of snow collapse) is a long term effect.

6.2 Density

The density of snow can vary enormously
from a very light powder like substance to
highly compressed ice. Density of one of the
most relevant material parameters of snow,
since most other parameters tend to depend
highly on it.

From [Piskova et al., 2008] we have the fol-
lowing densities for different types of snow.

Snow type Density ρ

Powder snow 10-50 kg/m3

Hangdog by wind 100-200 kg/m3

Firn dry 200-400 kg/m3

Firn light 400-600 kg/m3

Firn 300-800 kg/m3

Ice 800-900 kg/m3

In[Zhang and Huang, 2008] the particle size
and density for three types of snow is given
as

Type Particle diameter Density
New Snow ≤ 1mm 80 kg/m3

Fine snow ≤ 0.5mm 180 kg/m3

Old fine snow 0.5mm..1mm 230 kg/m3

Considering that we are dealing with snow
drifting, the snow will generally be low den-
sity new snow. We should therefore define
a rest density for snow that has just fallen
and let it evolve from here as described later
in section 9.1. New snow, in the heavy end,

has a density of around ρ = 100kg/m3. We
chose this somewhat heavy snow to let the
snow quickly form the smallest of neigh-
bor bonding, without explicitly modeling
the compression of the snow due to wind
forces actually smashing the crystals into
each other and bonding them. Do keep in
mind though, that this is just the initial rest
density.

6.3 Young’s modulus

Young’s modulus depends on den-
sity and temperature [Meller, 1975,
Cresseri and Jommi, 2005]. Other ma-
terials such as steel are also temperature
dependent, but what makes this different for
snow is that it is very temperature sensitive
inside the normal range of temperatures,
while steel for common use, disregarding
fires, does not change drastically.

For this reason we will limit ourselves
to simulations with constant temperatures.
Most measurements are for snow which is
dry and coherent, not slush and not fine pow-
der.

It should be noted that the moduli for coher-
ent snow is higher than for loose granular
snow. According to [Meller, 1975] the ma-
terial strength of snow increases exponen-
tially with time as the individual grains bond
closer and closer together. The loose snows
strength is approximately 40% of that seen
after settling for 3 weeks. This needs to be
taken into account if modeling snow behav-
ior over long periods of time, or when mod-
eling snow fall and drifting on top of a previ-
ous and older layer of snow. It is, however,
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not something we will be investigating any
further.

The density/modulus relationship is not lin-
ear [Meller, 1975]. It is somewhat linear
in the logarithmic plot however. Accord-
ing to [Piskova et al., 2008], it is a valid as-
sumption that Young’s modulus is exponen-
tial (logarithmic linear) for common snow,
while large density variations, as seen in
avalanches, should not make this assump-
tion. Given how Young’s modulus depends
on density, it is obvious that initially snow
compresses very easily while further com-
pression quickly becomes increasingly diffi-
cult.

Based on graphs of material strength
testing shown in [Meller, 1975,
Piskova et al., 2008] we have modeled
Young’s modulus as an exponential function
of density for snow at T = −20◦C (24)
which is shown graphically in Figure 14.

E(ρ) = 187300e0.0149ρ (24)

but only for the common density ranges
from around ρ = 100kg/m3 to ρ =
500kg/m3.

In the previous we talked about Young’s
modulus for compression, but snow is not
as strong in tension, stretching, as in com-
pression. This could let us write two val-
ues for Young’s modulus, but given that ten-
sion strength has not been measured for new
snow, but only for coherent, already strongly
bonded, snow, we will use a tension strength
of zero.

Figure 14: Young’s modulus given the
snow’s density. Note that the modulus axis
is non-linear. The plot represents our func-
tion (24)

6.4 Shear modulus

The shear modulus depends on density as
strongly as Young’s modulus, and a plot of
the relation can be seen in Figure 15. As
for Young’s modulus, we base our func-
tion for shear modulus (25) on graphs from
[Meller, 1975, Piskova et al., 2008]. A plot
of our function is shown in Figure 15.

G(ρ) = 1000e0.0143ρ (25)

which, as was the case for Young’s modu-
lus, is only valid for the common density
ranges from around ρ = 100kg/m3 to ρ =
500kg/m3.
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Figure 15: Shear modulus based on snow
density. The modulus axis is non-linear. The
plot represents our function (25)

6.5 Friction

Friction forces between snow and some
surface of another material are not imple-
mented. As shall be seen in section 9, fric-
tion between snow and some boundary will
be calculated as friction between snow and
snow through virtual particles.

6.6 Viscosity

According to [Meller, 1975], not only does
viscous stress depend on the viscosity and
the strain rate, but the viscosity itself de-
pends on the strain rate. This is not a prop-
erty which we need to model terribly ac-
curately in our project, considering that the
strain rate will generally be quite low.

From [Meller, 1975] we have an ap-
proximate relationship between vis-
cosity and density for snow, which
shows that over the range of densities
200kg/m3 ≤ ρ ≤ 600kg/m3, the dynamic
viscosity increases linearly in a logarithmic
plot shown in that work.

The increase is approximately 1000 times.
We have attempted to find a function which
expresses this relationship as a viscosity
multiplier mµ based on an initial viscosity
at an initial density of ρ = 260kg/m3. This
gives us

mµ(ρ) = e
rho−260kg/m3

49 (26)

This multiplier is 1 for ρ = 260kg/m3

and 1000 for ρ = 600kg/m3 and thereby
matches the plot from [Meller, 1975].

The values are, however, unrelated to strain
rate.

From [Nishimura and Maeno, 1989], we
have some details about viscosity depend-
ing on flow rate for an avalanche at a con-
stant density. The trouble is that the expres-
sion from that work makes the assumption
that the shear strain rate in the snow is given
by the linear flow velocity over the support-
ing surface. While this is true for rolling
avalanches, it is not true for sliding snow
drifts. We need viscosity in terms of shear
strain rate.

We have chosen to use an ”avalanche vis-
cosity” for a very slowly moving avalanche
with u= 5m/s an ρ = 260kg/m3 to get some
base viscosity. The viscosity model from
[Nishimura and Maeno, 1989] is
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µ = µ∞ +(µ0−µ∞)e
− u

uµ (27)

where µ∞ and µ0 are empirical friction con-
stants called viscosity at infinity and viscos-
ity at zero. Their value is µ∞ = 0.1 and
µ0 = 0.5. The flow velocity of the snow
is u, and uµ is a calibration constant set to
uµ = 50m/s.

That gives us a usable base viscosity of
0.4619 Pa · s. That approximately corre-
sponds to motor oil at a low temperature.
Obviously snow does not behave like oil,
and it will only have this viscosity when al-
ready moving, and the snow is much lighter
as well. More about the snows rigid behav-
ior in section 7.

If we now, from [Meller, 1975], take
the development of dynamic vis-
cosity density changes, and from
[Nishimura and Maeno, 1989] take value
of dynamic viscosity for moving snow at
a fixed density and fixed velocity, we can
combine the two into a new expression for
dynamic viscosity of snow given a density.

µ(ρ) = e
rho−260kg/m3

49 0.4619Pa · s (28)

It should be somewhat obvious that viscos-
ity is a highly non linear function in every
sense of the word, and it should be noted,
that while snow falls with a rest density of
ρ = 100kg/m3 the viscosity is defined based
on a higher density ρ = 260kg/m3.

This means that the viscosity multiplier will
be around 0.04, and that the viscosity is very

much lower. Newly fallen snow does intu-
itively have a low viscosity, but given that
all research into snow viscosity is focused
on avalanches, which have a higher density,
it is unclear if we can really extrapolate the
samples down into the region of snow that
light.

6.7 Poisson’s ratio

Poisson’s ratio can ordinarily, for simpler
materials, which are homogeneous, linear
and isotropic, be calculated from Young’s
modulus and shear modulus through the fol-
lowing relation

υ =
E

2G
−1 (29)

Homogeneous means that the material is
”the same” throughout, which is not true for
snow which is ice bridges and air. Snow
is generally isotropic which means that its
strength is the same along every axis.

An example of a non isotropic material
could be wood which is strongest along the
fibers. The linearity describes that the strain
stress relationship is linear, which is not true
for snow which is highly density dependent.
This ratio can therefore not be found from
the moduli we already have, but has to be
measured.

Measurements of Poisson’s ratio of snow is
a little uncertain, but it seems to be very low
over the normal lower range of snow den-
sities [Meller, 1975]. We will be using the
value of υ = 0 indicating that compressing
snow will make the crystal structure crush
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and the air filled cavities collapse, and expel
the contained air. Thereby, in a sense, some
material will bulge out the sides, but it is air,
which is no longer part of the material.

6.8 Failure strain

We have, in the literature, only been able
to locate values for failure strain for nor-
mal strain. For brittle materials, the failure
strain is commonly a constant, and for snow
it is approximately 0.002 for all densities of
snow. Young’s modulus is not constant for
all densities, so naturally the yield stress re-
lated to this yield strain is also not a con-
stant.

We write the following for yield stress given
the density dependent Young’s modulus.

ε f ailure =
σαα

E
≈ 0.002 (30)

We will interpret this as instant failure since
ε f ailure is for all intents and purposes very
small. This essentially means that the ma-
terial is either a non-elastic solid or a failed
material. This matches the material model
in section 7 very well, as we shall see.

6.9 Yield shear stress

Considering snow at a density of 300kg/m3

we have shear modulus

G(ρ = 300kg/m3) = 1000e0.0143ρ

G = 1000e4.29 = 72960Pa (31)

Using the known failure strain of 0.002, we
can calculate an estimated shear yield stress
as

τY = ε f ailureG (32)
τY = 0.002(72960Pa) (33)
τY = 145Pa (34)

From [NISHIMURA and MAENO, 1987]
we have that value given as 40-100 Pa
for moving snow and 540-1000 Pa for
hard sintered snow. As usual the physical
parameters for snow vary greatly depending
on a multitude of factors. We will use our
method of relating yield strain to stress,
since it is derived in a reasonable way, and
since its result does fall inside the range of
values provided in the literature. Seeing that
we have a plausible model for yield stress,
we write it as a function of density.

τY = ε f ailureG (35)

τY = 0.002(1000e0.0143ρ) (36)

τY = 2e0.0143ρ (37)

6.10 Speed of sound, compres-
sion waves

The speed of sound in a material3 is related
to Young’s modulus. The higher the mod-
ulus, the higher the speed of sound in the
material. It also depends on the Poison ratio
in the opposite way. The higher Poisson’s
ratio, the slower the speed of sound. This
makes sense since a compression wave in

3We need the speed of compression waves in the
snow for later in section 6.11.
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one direction would dissipate energy in the
orthogonal direction, if the Poisson’s ratio is
high, while it would not for a Poisson’s ratio
of zero.

Note that the expression ”speed of sound” in
snow is little counter intuitive since it does
not describe how fast a sound wave actually
moves through the snow, and the air inside
the snow, but rather how fast a compression
wave in the crystal structure moves. For that
reason we will now use the term compres-
sion wave speed or just wave speed, but we
keep the common symbol c with unit m/s

The relationship of wave speed, Young’s
modulus, density and Poisson’s ratio is writ-
ten as

c =

√
E(1−ν)

ρ(1−ν)(1−2ν)
(38)

where E is Young’s modulus, ν is the Pois-
son’s ratio and ρ is the material density.
We see density representing the mass and
thereby the inertia of the material here.

Given that we have already found ν to be
very small, and that we are using the value
zero, we see that, when we assume it to be
zero, we have an especially simple relation
between density, Young’s modulus and wave
speed.

c =

√
E
ρ

(39)

The higher the elastic modulus, the higher
speed of compression waves, and the higher

the density, the lower the speed of compres-
sion waves. When dealing with snow, how-
ever, Young’s modulus and density are also
related, as described in section 6.3 and re-
peated here

E(ρ) = 187300e0.0149ρ (40)

This lets us rewrite the wave speed as

c =

√
187300e0.0149ρ

ρ
(41)

6.11 Pressure under compression

When a material is compressed, the local
pressure increases. For an elastic material,
the pressure increase will make the material
return to its original volume, when the exter-
nal stress is removed. The relation between
pressure and other parameters such as den-
sity and temperature is called an Equation
Of State, abbreviated EOS, and there are a
great many different versions.

A material, such as snow, which has a very
small elastic region will plastically deform,
and it will not return to its original volume.
This indicates that pressure does not in-
crease permanently inside the material. Still
snow does resist compression.

In [Paiva et al., 2009] the equation for pres-
sure is given as

p = c2(ρ−ρ0) (42)

where p is pressure, c is the speed of com-
pression waves in the material and ρ and ρ0
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is the current density and the rest density.
This EOS is widely used because it is easy to
relate to an actual material through the pres-
sure wave speed c.

We have already in section 5 introduced a
relationship between strain and stress, and
should now relate that description, using
Young’s modulus, to the EOS here using
pressure, density and pressure wave speed.

If we revisit strain, and repeat the definition
of engineering strain εe as

εe =
l−L

L
(43)

where l is new length and L is previous
length, then we could write this in terms of
density ρ with ρ being the new strained den-
sity and ρ0 being the initial density.

εe =
ρ−ρ0

ρ0
(44)

This can be done since we are talking about
pressure from compression, where a com-
pression along one diagonal axis linearly
corresponds to a change in volume and
therefore a change in density.

ρ =
m

lxlylz

∆ρ =
m

lx
∆

lylz
(45)

where m is the mass, lx, ly, lz are the dimen-
sions in the x,y and z directions, so the vol-
ume is V = lx, ly, lz and ∆ is the scaling along

a single arbitrary axis. If for example we
have ∆ = 2, then the x dimension will be
half of the previous value, the volume will
be half and the density will be double.

The stress arising from such a density based
strain εe multiplied with Young’s modulus
E, is in terms of pressure measured in Pa.
The same is true for the EOS which also re-
lates change in density to pressure in Pa. If
we write them as being equal, which they
should be if the EOS is to describe the same
stress for the same strain, we have

εeE = c2(ρ−ρ0)

ρ−ρ0

ρ0
= c2(ρ−ρ0) (46)

If we now isolate c in the above, we should
be able to see its original definition, if the
equality is to hold

ρ−ρ0

ρ0
= c2(ρ−ρ0)

E(ρ−ρ0)

ρ0(ρ−ρ0)
= c2

E
ρ0

= c2

c =

√
E
ρ0

(47)

which is exactly the definition of pressure
wave velocity c in a material given Young’s
modulus E and density ρ from section 6.10,
and used throughout the literature.

While we have seen that EOS used often
enough, we have never before seen anyone
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take the time to validate it, by thinking it
through, as we just did. After this we feel
fairly confident that the EOS will result in
exactly the same stress, for a density vari-
ance, given a sound speed, as we would
have seen using the small strain tensor and
Young’s modulus.

Please do note that we are talking about
the small strain measure, engineering strain,
here and that it is normal strain. Shearing is
handled through viscosity, and yield stress
as described in section 7.

This EOS therefore only describe a subset of
the material behavior of snow, namely how
much the material resists being compressed
along any one axis.

To make this point clear, we will now rewrite
the EOS as

p =
E
ρ0

(ρ−ρ0) (48)

Note that if ρ < ρ0 we will have negative
pressure indicating a stretching of the mate-
rial. In section 6.3 we pointed out that new
snow under stretch has zero strength. This
means that we should have

p =

{
E
ρ0
(ρ−ρ0) ;ρ ≥ ρ0

0 ;otherwise
(49)

6.12 Summary

We will assume snow to be a completely
plastic material which resists deformation,

but which has no elastic properties. We as-
sume perfect collapse of the crystals and use
a Poisson’s ratio of zero. We use the fol-
lowing models for Young’s modulus E, and
shear modulus G, as functions of density ρ .
These will be based on dry coherent snow
at approximately -10 degrees Celsius. The
elastic moduli are only relevant for the ”in-
elastic” snow because of how we calculate
pressure wave speed and yield strength.

While temperature is assumed to be con-
stant, we do allow for a changing density
ρ , and since a change in density very much
changes the material properties of snow,
they are given as functions of density.

The complete summary is shown in table
6.12.

7 Rheology and granular
flow

While the primary behavior of snow is de-
scribed through its individual snow flakes
interaction with the wind, we do need to
consider how the material responds to exter-
nal forces as a whole. To properly calcu-
late how tall a snow drift will be, depends
both on how well snow resists the shearing
forces arising from the gravitational pull on
the snow itself, as well as how well the snow
resists compression.

As mentioned, snow is moved by the wind,
primarily by saltation and suspension, but at
the same time it is deformed by gravity. A
snow drift is built by the wind, but it does not
flatten out completely once the wind stops
blowing. The snow is kept at its drift shape
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Density dependent
material properties for snow

Initial rest density ρ0 = 100kg/m3

Young’s modulus E(ρ) = 187300e0.0149ρPa
Shear modulus G(ρ) = 100e0.0143ρPa
Poisson’s ratio υ(ρ) = 0

Viscosity µ(ρ) = e
rho−260kg/m3

49 0.4619Pa · s
Shear yield stress τY (ρ) = 2e0.0143ρ

Speed of sound c(ρ) =
√

183700e0.0149

ρ
m/s

Figure 16: Summary of density dependent material properties used for snow. All of them were
derived from graphs or point samples in cited papers.

by internal stress counteracting the external
force of gravity.

Cohesion-less snow can be described as a
granular flow, where there is sliding friction
between the individual particles, but where
those particles do not stick together.

Snow can be described as a non-Newtonian
fluid using rheological material models.
Rheology is for example used in describing
soil movement and avalanches. It captures
the material behavior in a few key material
values which is the yield stress of the mate-
rial, and the strain rate dependent viscosity
when flowing.

7.1 Non-Newtonian flow

A Newtonian fluid is a fluid which cannot re-
sist shear stress and always remain fluid with
a constant viscosity regardless of the forces
acting on it. If subject to shear stress, the
fluid will continue to flow. This means that
a Newtonian fluid placed over a plane, and
subjected to gravity will flatten totally. This
is only true to a degree since surface tension

will in fact counteract this flattening, but that
is only relevant on the very small scale.

A non-Newtonian fluid, on the other hand,
may resist some amount of shear stress.
Placed over a plane and subjected to gravity,
it may form a pile of the material which col-
lapses until the point where the shear stress,
induced by gravity, is not strong enough to
overtake the internal yield stress τY in the
material. When the material comes to rest,
the slope of the pile of material is termed
the friction angle, and the higher the yield
strength, the steeper the slope. For snow
this friction angle has been reported to be
around 63◦ [Cresseri and Jommi, 2005] for
snow with a density of around 300kg/m3.

The reason for the behavior of Newtonian
fluids and non-Newtonian fluids has to do
with the material properties of the fluid it-
self. Primarily the particle size and the
particle-particle friction as well as particle-
particle attraction.

When considering granular flow, the parti-
cles are at a macroscopic level, while a fluid,
such as water has microscopic particles. If
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Figure 17: A particle tries to ”flow” over the
other particles in a granular material

we consider a granular material, in which a
single particle tries to ”flow”, as seen in Fig-
ure 17.

We note that the particles form irregular sur-
faces which grind towards each other when
the particles move. As one particle attempts
to slide to the left, it needs to rise up from its
place among the other particles, slide over
another particle and then click into place at
a position farther to the left.

This requires energy, and it is the reason
there is a certain yield strength which de-
scribes how much force must be applied to
make the particles move. If the force push-
ing the particle is removed before the parti-
cle is moved enough to fall into a new local
minimum, the particle will move back into
its original position, and it will be an elastic
deformation.

It is clear that, when first the particles are
in motion, there is no stationary hole that
the particles need to climb out of in order
to move. The particles will be bouncing
around, and it will take little force to con-
tinuously pull a single particle through this
vibrating collection of particles.

This is the reason that the viscosity is re-
duced as a function of shear strain rate. If

we have a stable pile of granular material
and we then start to vibrate the material, it
will also start to flow like a Newtonian fluid,
and it will flow until it is just a single layer
of particles.

A Newtonian fluid such as water will have
much smaller particles. So small, in fact,
that the vibration from the heat of the
fluid will be enough to bounce the particles
around and make it flow easily. It is clear
that, as the temperature drops, the willing-
ness to flow will be reduced and vice versa.

The result of this is that depending on the
yield stress, a pile of snow will have a cer-
tain well defined slope as illustrated in Fig-
ure 18 and Figure 19. A high yield stress
will result in a steeper slope. The angle of
the slope against horizontal is called the fric-
tion angle, or angle of repose. A common
friction angle for snow is 63◦ as reported in
[Cresseri and Jommi, 2005].

7.2 Bingham plastic

There are a number of different rheologi-
cal material models which describe a ma-
terial with yield strength and viscous flow.
They differ slightly in how the transition
from solid to fluid takes place, and in
how viscosity relates to strain rate. The
more common models are the Bingham plas-
tic, the Power law and Herschel-Buckley
model [Capone, 2010, Hosseini et al., 2007]
as well as the Generalized Newtonian Fluid
model [Paiva et al., 2009].

What they all have in common is that they
derive a viscosity from the shear strain rate
and that they describe a certain yield shear
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Figure 18: A pile of very loose slippery
snow forming a flat pile of snow with an
edge angle of 40 degrees

Figure 19: A pile of more compact snow
forming a steep pile of snow with an edge
angle of 60 degrees

Figure 20: A Newtonian fluid and a Bing-
ham plastic. Note how the strain first starts
after a certain yield stress, and how the
strain/stress relationship is then linear. The
slope of the lines is equal to the viscosity of
the ”fluids”

stress below which the material behaves as a
solid. We will consider the Bingham Plastic
model in the following.

While a Newtonian fluid has a con-
stant stress/strain relationship, which goes
through origo, zero strain and zero stress,
the same is not true for a Bingham plastic.
Here there is a specific yield stress which
needs to be overcome before any strain oc-
curs. After yielding, the Bingham plastic be-
haves like an ordinary Newtonian fluid with
a linear stress strain relationship.

A principal descriptor in the Rheo-
logical model is the shear strain rate
[Hosseini et al., 2007], which can be written
as

γ̇ =
1
2
(∇u+∇uT ) (50)

where ∇u is the gradient of the velocity field.
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We also have a measure of magnitude of this
shear strain rates as

|γ̇|=
√

∑
i j

γ̇i jγ̇i j (51)

Shear stress τ relates to shear strain rate
through the following expression.

τ = µ(|γ̇|)γ̇ (52)

where µ(|γ̇) is a function for viscosity given
the magnitude of the shear strain rate, but in
our case we do not have a strain rate depen-
dent viscosity, and therefore fall back to the
expression for a Newtonian fluid, which has
constant viscosity. This gives us

τ = µ0γ̇ (53)

We here introduce µ0 as a value of viscosity
in the fluid state, while we will be using µ

as the value of viscosity in the current, solid
or fluid, state.

In the Bingham plastic model, we have an
entirely solid material if the shear stress is
below a certain yield stress τY , and a fluid if
the stress is above. This is written formally
as

|τ| ≤ τY → γ̇ = 0 (54)

|τ| ≥ τY → τ =
( τY

|γ̇|
+2µ

)
γ̇ (55)

which is simply stating that if shear stress is
below yield, the stress is what it is, but the

strain is zero - the material is rigid - and that
if shear stress is above yield, then the mate-
rial break and a new expression exist for the
shear stress, and the material is now a fluid.

It is not absolutely correct to model the ma-
terial as behaving in a discontinuous way, as
just described. There is an elastic part where
the shear stress is still below the yield stress,
but where the strain is not zero. Here the
material will behave as an elastic.

The shear strain possible, before enough
shear stress is built up to overcome the yield
stress, is however so small that it is com-
monly disregarded. In the case of snow we
have already in section 6 observed that the
failure strain is very small indeed.

One way to handle the solid part of the ma-
terial may be to use two different viscosi-
ties. One very high for the ”solid” part and
one lower describing the already yielded and
fluid like material. The ”solid” viscosity is
modeled as α = 100 in [Paiva et al., 2009],
where α is a viscosity scalar.

|γ̇| ≤ τY

2αµ
→ τ = 2αµγ̇ (56)

|γ̇|> τY

2αµ
→ τ =

( τY

|γ̇|
+2µ

)
γ̇ (57)

What this does, is essentially seeing if the
viscosity, and strain rate induced stress, is
below the yield stress by rewriting the in-
equality 2αµ|γ̇| ≤ τY . If it is, the material
is ”solid” which means we will be using the
high viscosity αµ .

One could argue that a highly viscous ma-
terial is not the same as a rigid material,
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and that when modeled as viscous, the scalar
should not be α = 100, but rather α = ∞.

While that is a valid point, snow is never re-
ally rigid. As described in section 6 snow
will slowly deform under constant stress,
and increase in density over time, due to
creep. Because of this, it is not an entirely
unrealistic assumption that rigid snow is ac-
tually a highly viscous flow. Additionally,
solving differential equations with infinite
stress for any strain is not feasible.

In other implementations of rheolog-
ical models such as [Capone, 2010,
Hosseini et al., 2007, Paiva et al., 2009] this
α = 100 has been found to be reasonable.

To use the previous equations, we need to
settle on some viscosity. We have from sec-
tion 6 a viscosity and we will use this for
the fluid phase and αµ with α = 100 for the
”solid” creeping phase.

7.3 Summary

The equations describing the rheological
model in short form is given here. It is clear
that the rheology in this work only deals
with finding a current viscosity, high or low.
This will be used in section 9.

γ̇ =
1
2
(∇u+∇uT )

|γ̇|=
√

∑
i j

γ̇i jγ̇i j

τY (ρ) = 2e0.0143ρ

µ0(ρ) = e
rho−260kg/m3

49 0.4619Pa · s

µ(ρ, γ̇) =

{
100µ0 ; |γ̇| ≤ τY

200µ0

µ0 ;otherwise
(58)

(59)

8 Smoothed Particle Hy-
drodynamics

Smoothed Particle Hydrodynamics, here-
after SPH, is a so called Lagrangian method
- as opposed to an Eulerian method. Where
an Eulerian method defines the space in
which a material moves, and does not track
any part of the substance in particular, but
rather keeps track of how much is located at
a particular position in space, and what the
properties is of the material currently at that
position; a Lagrangian method deals explic-
itly with a part of the material and tracks this
material through space and time.

A helpful analogy for an Eulerian method
is a grid of weather stations located on the
ground. As the weather moves across the
landscape, each weather station monitors the
current weather at its own position in the
world. A Lagrangian method, on the other
hand, would consist of a number of weather
balloons which float in the air, and travel
with the weather. Each balloon tracks the
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Figure 21: A continous green function and
its point sample discretization

weather as it moves with that weather. At
the same time it tracks its own position, so
that it can relate its measurements to a cur-
rent position over the ground.

SPH is used to discretize Partial Differential
Equations PDE, in order to solve them nu-
merically.

Physical equations, such as the Navier
Stokes equations for fluid, can only be
solved analytically for very specific and sim-
ple cases. For anything non-trivial, the equa-
tions must be solved numerically, which
again requires a discretization of the prob-
lem.

The general PDE describes relationships be-
tween various parameters in a continuum,
and it is the transformation from a contin-
uum description to a discrete description we
call ”discretization”.

While SPH is used for physical simulation in
this project, it is more general than that, and
in this section we will describe it in those
general terms.

SPH is an interpolation method which solves

the discretization problem by interpolating
the (unknown) field values in between sam-
ple points termed ”particles”. While a par-
ticle is essentially just a sample point, we
will hereafter use the term particle to con-
form to the usual SPH naming. Each parti-
cle carry with it an influence weight, com-
monly a mass, and various other properties,
such as velocity, temperature, pressure etc.
Those quantities are defined exactly only for
the specific positions of the particles. In or-
der to obtain field values in between parti-
cles, the attributes of the individual particles
are smoothed over space and then a sum is
calculated to find the field values. An exam-
ple of such a smoothing of a point sample
is seen in Figure 22 where the smoothing is
done by a Gaussian kernel.

The interesting thing about SPH, in a physi-
cal sense, is that the sample points need not
be stationary. Rather, they can be moving
with the medium being sampled, and this
way they, in a sense, are what they are sam-
pling.

Further more, the particles have no prede-
fined neighbor relations to other particles, as
is seen in mesh based methods such as Fi-
nite Difference, Finite Volume and Finite El-
ement etc. Neighbor relations are calculated
and recalculated dynamically. This property
makes SPH especially well suited for de-
scribing highly deforming materials, such as
fluids.

This concept of point samples and interpola-
tion is also used in kernel based probability
density estimations [Bishop, 2006], where it
is attempted to learn about an underlying
probability distribution based on point sam-
ples. In the following, we will a little later
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Figure 22: A point sample has a weight in
its surroundings when used for interpolation.
Here its interpolation weight is smoothed us-
ing a Gaussian kernel. This is done by con-
volving the point with the kernel. We note
that the farther away the point should have
interpolation influence, the lower the weight
will be.

illustrate SPH by using it to recreate an un-
known function, its derivatives and its inte-
gral, given only point samples.

Given that this is an interpolation method,
the closer the points are, the more true and
detailed the description can be, and the fa-
ther apart the points are, the more uncertain
the values are and the more the result is a
smoothed representation of the underlying
material.

In Figure 23 we see two points which are
smoothed to a degree where they overlap.
We note that each samples influence inte-
grate to one over the domain and that the
sum of samples integrate to two. More about
this shortly.

Generally not all samples are created equal,
and may therefore have different weight in
the interpolations. When talking about ker-

Figure 23: Two point samples are smoothed
using a Gaussian. Note that the shaded area
is the sum of the two smoothed weights and
that this area equals one.

nel interpolation in probability theory, the
weight generally corresponds to the num-
ber of point samples in a certain neighbor-
hood, summed together, while in physics the
weight is the mass of the material that a
point sample represents.

8.1 Integral formulation

We will now briefly look at the mathemat-
ical derivation of the method. For a more
in depth version, we refer the reader to
[Liu and Liu, 2003].

If we, for the example, assume that we have
an ”unknown” function f (x),x ∈ ℜ which
we only have discrete samples of, we will
attempt to reconstruct this function using
SPH. We will pretend to not know the true
function in the following, but is is defined
as the following which is used to obtain the
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samples.

f (x) = 10x2− x3 (60)

We can rewrite this function in terms of an
integral over space of the function multi-
plied with a point sampling operator

f (x) =
∫

Ω

f (x′)δ (x− x′)dx′ (61)

where Ω is the volume containing x and δ is
the Dirac delta operator, which is defined as

δ (x) =

{
1 ;x = 0
0 ;x 6= 0

(62)

That delta function based definition of f (x)
is true because for every x′ 6= x, the inside
of the integral evaluates to zero while it be-
comes f (x) when x′ = x. That integral def-
inition of f (x) is essentially the continuous
variant of point samples, where there are an
infinite number of point samples, and the
function if perfectly represented. The delta
function can be considered a mathematical
way of obtaining a point sample of a func-
tion through multiplication.

If we now replace the delta function
δ (x− x′) with a special smoothing kernel
W (x− x′,h), as seen in Figure 22, where h
is a smoothing parameter defining how wide
the smoothing kernel is, we can write f (x)
in integral form again as

f (x)≈
∫

Ω

f (x′)W (x− x′,h)dx′ (63)

The smoothing parameter h is commonly re-
ferred to as the support radius. The support
radius is the maximal distance r at which the
weight W (r,h) is non zero. We will look
more closely at that in section 8.4.

With the definition in (63) we do not have a
perfect representation, but rather a smoothed
one. Taking the limit of h going to zero, we
will regain the actual function.

f (x) = lim
h→0

∫
Ω

f (x′)W (x− x′,h)dx′ (64)

since

lim
h→0

W (x− x′,h) = δ (x− x′) (65)

According to [Liu and Liu, 2003], the accu-
racy of SPH kernel based approximation is
O(h2).

The kernel has to integrate to 1, for the
above relations to be true. If it does not, it
will rescale the function, and the smoothed
representation would be scaled by α where
α =

∫
Ω

W (x− x′,h)dx′. Note that in fact the
definition of the delta function ensures that
it integrates to 1 as well.

f (x)≈ α

∫
Ω

f (x′)W (x− x′,h)dx′ (66)

While we do not get an exact representation
of the function f (x) using the integral repre-
sentation with a smoothed kernel, we do still
get an exact integral so that

∫
Ω

f (x) =
∫

dx

∫
dx′

f (x′)W (x− x′,h)dx′dx

(67)
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Figure 24: A noise function is smoothed us-
ing two different kernels with different sup-
port radius. It is evident that the larger the
support, the more the function deviates from
the true function and the more smoothed it
is. The x and y values are just dimensionless
real values numbers.

This means that while the smoothing meth-
ods in SPH does not guarantee the recov-
ery of the exact function, it does, however,
guarantee the conservation of the value of
the integral. That is evident when consid-
ering what happens to each of the infinite
point samples. It is smoothed over space,
but given that the smoothing kernel always
integrates to 1, the integral of a single point
sample will be conserved

∫
Ω

f (x− x′)δ (x− x′)dx′ = ...∫
Ω

f (x− x′)W (x− x′,h)dx′ (68)

f (x− x′)
∫

Ω

δ (x− x′)dx′ = ...

f (x− x′)
∫

Ω

W (x− x′,h)dx′ (69)

f (x− x′) ·1 = f (x− x′) ·1 (70)
f (x− x′) = f (x− x′) (71)

This is a very useful feature of SPH, when
used for physical simulations, since this is an
automatic conservation of the point sampled
quantities, such as momentum or energy in
general.

8.2 Derivatives

The spatial derivative of the smoothed func-
tion is obtained simply by replacing W with
∇ ·W . This is seen from the following
rewrite, taken from [Liu and Liu, 2003], of
(63) with the divergence operator ∇· added
to the equation. Note that for a real valued
function, the divergence of the function is
equal to the gradient - the derivative - while
for vector valued functions, the divergence
is the sum of partial derivatives. We use the
divergence, rather than just the gradient, for
reasons related to the Gauss divergence the-
orem, used at the end.

∇ · f (x) =
∫

Ω

[∇ · f (x′)]W (x−x′,h)dx′ (72)

Differentiating f(x’) multiplied with W can
be done using the chain rule which gives
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[∇ · f (x′)]W (x− x′,h) =
∇ · [ f (x′)W (x− x′,h)]− f (x′) ·∇W (x− x′,h)

(73)

Combining (72) and (73) gives

∇ · f (x) =
∫

Ω

∇ · [ f (x′)W (x− x′,h)]dx′−

...
∫

Ω

f (x′) ·∇W (x− x′,h)dx′ (74)

Gauss’ divergence theorem, as explained in
section 11.1, lets the first integral term be
rewritten as a surface integral. The vector n
is the normal at the surface boundary.

∇ · f (x) =
∫

S
f (x′)W (x− x′,h)] ·nds−

...
∫

Ω

f (x′) ·∇W (x− x′,h)dx′ (75)

This can be done because, for a kernel with
compact support, the W (x− x′) term will be
zero at the surface of the domain, as seen in
Figure 25, if the kernel is entirely inside the
domain. The surface S is here the surface,
outer boundary, of the entire domain Ω and
not of the smoothing function! Therefore, if
the smoothing kernel is entirely within the
domain, it will be zero at every point of the
domains surface S - the red kernel is not
touching the dark green boundary. If, on the
other hand, the smoothing kernel is partially
sticking out of the domain, this assumption
does not hold. This is seen as the blue fig-
ure which is non-zero for part of the domain
boundary S indicated with solid red.

Figure 25: A domain Ω in light green having
outer boundary S in dark green. A smooth-
ing kernel in red is entirely within the do-
main, never touching the domain surface S.
Another smoothing kernel in blue is par-
tially outside the domain, touching the do-
main boundary S along the solid red line.

For this reason, a smoothing kernel should
have compact support, meaning that it has
some finite distance at which it becomes
zero W (r) = 0 for some r < ∞. Otherwise
we have no hope of containing the smooth-
ing kernel inside the domain.

This lets us rewrite the expression into its
final form (76).

∇ · f (x) =−
∫

Ω

f (x′) ·∇W (x− x′,h)dx′

(76)

As mentioned in [Liu and Liu, 2003] artifi-
cial boundaries may influence the actual sur-
face in a way that make the surface integral
non zero, but we will be dealing with that in
our boundary treatment in section 8.5.
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8.3 Discrete SPH

In the integral formulation before, we saw
how the function was represented through
an infinite number of point samples, by in-
tegrating over the entire domain. That is
still not a discrete version of the function.
It is merely a version which introduces the
concept of point samples and smoothing. In
order to become a discrete description, the
method has to rely on a finite number of
samples, rather than an infinite number.

The SPH approximation given a finite num-
ber of samples is rewritten from the contin-
uous integral form to a discrete sum over j
samples as

f (x) =
∫

Ω

f (x′)W (x− x′,h)dx′ (77)

≈∑
j

f (x j)W (x− x j,h)∆Vj (78)

≈∑
j

f (x j)W (x− x j,h)
1
ρ j

(ρ j∆Vj)

(79)

≈∑
j

f (x j)W (x− x j,h)
1
ρ j

m j (80)

Here we introduce ∆Vj as the volume of the
particle and ρ j which is the density of the
particle.

Recall from earlier that every point sam-
ple had an associated weight, which was,
in physical terms the particles mass. That
weight distributed over a volume is then a
weight density, or again in physical terms,
just the density. First we rewrite the inte-
gral into a sum over j elements. To do this,

we need to multiply with each samples vol-
ume. This volume is then rewritten in terms
of weight and density.

This results in the general SPH method to
approximate any field value A, known only
from point samples, at any location r.

A(r) = ∑
j

m j
A j

ρ j
W (|r− r j|,h) (81)

In order to obtain the density, through a di-
rect summation as the above, we insert ρ j
instead of A j and get

ρi = ∑
j

m j
ρ j

ρ j
W (|r− r j|,h) (82)

= ∑
j

m jW (|r− r j|,h) (83)

From section 8.2 we know that the deriva-
tives of a SPH approximation can be found
by using the derivative of the kernel function
rather than the derivative of the sample func-
tion. We can therefore write the derivative as

∇A(r) = ∑
j

m j
A j

ρ j
∇W (|r− r j|,h) (84)

8.3.1 SPH interpolation example

We now briefly look at SPH interpolation of
a function, knowing only the point sample
values.

In Figure 26 we observe an attempted inter-
polation using a very narrow Gaussian ker-
nel with a standard deviation of 0.5. The

40



Part I - Snow 8. Smoothed Particle Hydrodynamics

0p1.png

Figure 26: Gaussian kernel which have too
small support with a standard deviation of
only 0.5. The function is not well approxi-
mated.

true function is shown in green and the point
samples are red vertical lines with a circle
indicating the sample value. It is evident that
the function is not reconstructed with this
kernel. Instead we see a set of individual
Gaussians with a value of zero in between.

Using a slightly lager support radius, as on
Figure 27, now with a standard deviation of
0.5, the result is still not reasonable, but at
least now the value does not go to zero in
between samples.

Expanding the support, now with a standard
deviation for the Gaussian of 1, the result
looks reasonable in Figure 28. The function
is smooth and quite close to the true func-
tion. We note that in the highest part of the
function, the SPH approximation is too low
and in the lower parts of the function the
SPH approximation is too high. This is due
to the fact that the high point sample is af-

0p5.png

Figure 27: Standard deviation of 0.5, while
the approximation does not reach zero in be-
tween samples, it is still a poor representa-
tion of the true function.

fected by the neighboring lower samples and
that the same effect is seen in reverse for the
lower points.

If we expand the support further to a stan-
dard deviation of 4, the approximated func-
tion is becoming too smooth as seen in Fig-
ure 29

If we instead of changing the support ra-
dius, change the number of samples, we can
try interpolating with the very narrow kernel
with a standard deviation of 0.1 but now us-
ing ten times as many samples. This is seen
in Figure 30 where it is clear that this is the
best approximation so far. As shown earlier,
as the smoothing length goes towards zero
and as the number of samples goes to infin-
ity, the approximation error goes to zero.

We now show the same approximation for
the derivative of the function. In Figure 31
we see that again using a standard deviation

41



Part I - Snow 8. Smoothed Particle Hydrodynamics

1.png

Figure 28: Standard deviation of 1 and the
approximation mathes the true function very
well.

4.png

Figure 29: Standard deviation is 4 and the
approximation is not much too smooth and it
does not capture the true nature of the func-
tion.

0p1 50 points.png

Figure 30: Standard deviation of 0.1 and
50 samples. This approximation approaches
the true function since the kernel width ap-
proaches zero and the sample count goes to-
wards infinity, at which point the approxi-
mation error becomes zero.

of 1, we get a decent approximation - only
this time for the derivative of the function.

Finally we see in Figure 32 what happens if
some areas have a lower sample point den-
sity. While the used standard deviation of
0.5 works somewhat reasonable for most of
the domain, it fails miserably in the neigh-
borhood of x = 4 where there are far be-
tween sample points. This demonstrates
the relationship between smoothing kernel
support radius and concentration of sample
points. The farther spaced the points are, the
greater the support radius needs to be. This
will be addressed in more detail in section
8.7.
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std 1.png

Figure 31: Standard deviation is 1 and this
time we see that the first derivative of the
function can be well approximated as well.
Note that this plot is zoomed closer than the
previous ones to better show the result.

0p5 lacking particle at center.png

Figure 32: Std 0.5 particle missing at center.
Note that SPH assumes the lack of particle
to mean there is none...

8.4 Kernels

For a kernel to give a reasonable smooth-
ing of a particle sampled field, it has to ful-
fill some general requirements, and in some
cases it has to be designed to fit a specific
purpose as described in the following. Re-
call that W (ri− r j,h) means a kernel func-
tion over the distance vector between two
positions ri and r j and with a support radius
of h, meaning that |r| ≥ h→W (r,h) = 0.

8.4.1 Density kernel

Often density is smoothed using a func-
tion, which looks like a Gaussian. In
[Monaghan, 1992] it is stated that the phys-
ically most reasonable kernel is a Gaus-
sian. A Gaussian distribution is what is com-
monly seen in nature, and it defines a normal
distribution. A Gaussian is, however, not
compact since it only approaches zero as the
distance from its mean increases - it never
actually becomes zero. As mentioned previ-
ously in section 8.2 it really should be com-
pact in order for the derivation of some of
the SPH identities to hold true. For this rea-
son the Gaussian is commonly replaced by
an approximation that looks like the Gaus-
sian and which is compact. Further more,
a Gaussian with infinite support requires ev-
ery particle to be considered a neighbor, and
not just the particle close by, even though the
contribution of far away particles is negligi-
ble.

One such function is known as poly6 which
is defined as in (85) and this is the function
we have used. A problem observed when
using the poly6 kernel is mainly that it is not
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Figure 33: The poly6 kernel which approx-
imates a Gaussian inside the support radius
which is here 2

infinitely differentiable as the Gaussian is.

Wpoly6(r,h)=
315

64πh9

{
(h2−||r||2)3 ;0≤ ||r|| ≤ h
0 ;otherwise

(85)

The fraction in the equation is the normal-
ization constant, used to ensure an integral
of 1. It is interesting that r2 is used since the
squared distance between two points is eas-
ily calculated, while finding |r| requires the
use of a computationally more costly square
root.

8.4.2 Kernel for field gradient forces

While the poly6 kernel is easy to evalu-
ate, it has the same ”problem” as the Gaus-
sian which it emulates. Its first deriva-
tive approaches zero when |r| approaches
zero. This means that as two sample points
come close together, the kernel based gradi-
ent weight will will decrease and for |r|= 0
it will be zero. If sample points are very
close and they have different values for some

Figure 34: Spiky kernel and its gradient for
a support radius h of 2

parameter A, then it stands to reason that the
gradient of A should be increasing towards
infinity as the particle distance approaches
zero. This is however not what happens if
the gradient of the kernel approaches zero as
the distance approaches zero.

To remedy this problem the so called Des-
bruns spiky kernel (86) was designed, and is
seen along with its gradient in Figure 34.

Wspiky(r,h)=
15

πh6

{
(h−||r||)3 ;0≤ ||r|| ≤ h
0 ;otherwise

(86)

This kernel is discontinuous in its first
derivative and is shaped such that the gradi-
ent will increase exponentially as two sam-
ple points approach each other, and as they
pass each other the sign of the gradient will
immediately invert.

∇Wspiky(r,h)=−
45

πh6

{
r
||r||(h−||r||)

2 ;0≤ ||r|| ≤ h

0 otherwise
(87)
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8.5 Boundary conditions

Boundaries can be easily handled by using
constraints which keep the particles from
penetrating. This is commonly done, but
the result is a loss of density ”over the
boundary”. A particle has a point position
in space, but the smoothing function has a
certain size. If the point particle is posi-
tioned right along the boundary, then some
of the smoothing function will be outside the
boundary. This means that the mass conser-
vation is essentially lost.

As an alternative to the simple constraint
one can use virtual boundary particles
[Liu and Liu, 2003]. They provide bound-
aries with mass conservation as well as
boundaries that can exert repulsive forces
using the same physics as between individ-
ual particles. Additionally it gives easy ac-
cess to no slip boundaries as shall be seen.

Whenever a particle is closer to the bound-
ary than one smoothing radius, then is is
”touching” the boundary with the smoothing
radius. In those situations, a virtual mirror
particle will be created on the exact opposite
side of the boundary. If the real particle is
close to several boundaries, it will create a
boundary particles for each boundary. This
can be easily done by projecting the particle
through the plane of the boundary and out
on the other side. The component of the ve-
locity vector of the virtual particle normal to
the boundary will also be the exact opposite
of the real particle. The tangential velocity
component may be the same as the real par-
ticle to give a slip boundary, while it could
also be set to zero to give a no slip boundary
as described in section 8.5.

Mass conservation In Figure 35, a parti-
cle is seen positioned at x=10, near a bound-
ary at x=15. The smoothed density function
of the particle is shown as a Gaussian. While
the particle is inside the domain 0≤ x≤ 15,
some of its density is lost outside the do-
main, seen as an orange area. If we inte-
grate density over the entire domain we ex-
pect the result to be the total mass of all par-
ticles. This is no longer the case. To remedy
this, we can create and place a virtual bound-
ary particle on the outside of the domain in
a way so it forms a mirror image of the real
particle. This is seen in Figure 36 as the par-
ticle at x=20.

If we again integrate density over the do-
main, and include the part of the virtual par-
ticle which spills over the boundary, then
we will again arrive at the real total mass
of particles inside the domain. In Figure
36 we draw this integral of density, or sum
of Gaussians as it is, as a green curve. We
note that this green curve initially coincides
with the shape of the real particles smooth-
ing function, but as we approach the bound-
ary the green curve (integral of density) di-
verges and attains a higher value. It is clear
that this is due to the simple fact that what
the real particle lost to outside the domain is
exactly identical to what the virtual particle
lost to inside the domain. Adding the virtual
contribution will make the density inside the
domain rise and mass has been conserved.

Impenetrable boundaries If the particle
velocities, the accelerations and the time
steps are such that a particle cannot pass
through another particle, then obviously
no particles can pass through a boundary
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Figure 35: A particle next to a boundary is
loosing some of its density outside the do-
main. Note the orange part which is the
parth of the smoothed density which is lost.

Figure 36: By adding a virtual boundary par-
ticles as a mirror image on the other side
of the boundary, the sum of the two densi-
ties inside the domain will exactly equal the
complete density of the real particle.

Figure 37: A particle experiences both vis-
cosity forces and presure forces as it ap-
proaches a boundary ”guarded” by a virtual
particle.

”guarded” by a mirror particle as seen in
Figure 37. This will be the case if the
CFL condition is uphold as described in sec-
tion 9.6. As the real particles approaches
the boundary, pressure forces will increase
and push the particle away from the bound-
ary and the approaching real particle will
also experience velocity dampening viscos-
ity forces due to the virtual particle moving
in the opposite direction.

No slip boundary If a no slip boundary
is required, it can be easily implemented by
having virtual particles which have their in-
plane velocity set to zero. This means that if
a boundary is aligned with the xy-plane, then
the virtual particles should have zero veloc-
ity in the xy-plane. The velocity component
along the boundary’s normal vector, the z-
axis, is not constrained to be zero and will
just be the opposite of the real particles nor-
mal velocity as seen in Figure 38. By hav-
ing the boundary particles not move in the
boundary plane, the real particles will expe-
rience frictional drag when sliding along the
boundary as if they interacted with a station-
ary no slip boundary. Different friction quo-
tients can be used for different boundaries
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Figure 38: A virtual particle has its in-plane
velocity set to zero to provide a no slip
boundary

by assigning real-virtual particle pairs vari-
ous friction quotients.

Difficulties with boundary particles For
complex geometry, the boundary particles
may be too simple a solution. Every real par-
ticle will interact with every boundary par-
ticle in range. This is not a problem for a
boundary which extends over an entire plane
in 3D, such as the xy-plane, but for smaller
boundaries it can cause inaccuracies. In Fig-
ure 39 two particles are near the same corner.
Both project a boundary particles to the in-
side of the corner and, in this example, both
the boundary particles are places in the same
place. While the real particles are not in-
side each others support radius, both do see
the other ones boundary particle. The result
is that both real particles will experience a
repulsive force from the boundary which is
twice what it should have been. Many other
examples of this type can be found in real
simulations, and it is a source for some con-
cern and it has been addressed in some detail
in [Monaghan and Kajtar, 2009].

In our solution, we recognize that inaccu-
racy, but it is irrelevant for us given how we
handle the boundary particles as described
in section 9.4. For other implementations,
we note, however, that for small smoothing

Figure 39: Two particles are near a cor-
ner and they both create a virtual particle
which results in double the expected repul-
sive force

lengths, the problem is only relevant very
near to an edge or corner, or on opposite
sides of very thin objects. Only particles less
than one smoothing radius away from the
trouble zone will ever experience the prob-
lem and then only if another particle hap-
pens to on the other size of the zone - no
farther than two smoothing radii away. This
will realistically happen, but given than the
event will be somewhat rare and that the re-
sult, should it happen, is not catastrophic,
this is something most models can probably
live with. It is not a problem for us though.

8.6 Surface

We may need to determine which SPH
particles define the outer boundary of a
SPH sampled field. This is commonly
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Figure 40: A snow drift over a horizon-
tal boundary, using exaggerated smoothing
lengths for better illustration. Notice how
the blue boundary particles are a mirror im-
age of the real particles closest to the bound-
ary

Figure 41: A snow drift over a horizontal
and next to a vertical planar boundary. Note
how the blue and green boundary particles
mirror the real white particles. The drift is
in 3D and seen slightly at an angle which is
why not every particle has a visually obvious
matching boundary particle.
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implemented using a so-called color field
[Müller et al., 2003] which is defined as

C(r) = ∑
j

m j
1
ρ j

W (r− r j,h) (88)

where m j is the mass of the j’th particle,
ρ j is the density of the j’th particle, W
is the smoothing kernel using the smooth-
ing length h and the particle distance vector
r− r j.

We note that using this definition, the field
contribution of the j’th particle, inside the
particles support, is 1m j. Put another way, if
the kernel W was used to calculate the den-
sity, then the density scaled kernel will be 1
inside the support, or formally

W (r− r j,h)
ρ

=

{
1 ; |r− r j| ≤ h
0 ;otherwise

(89)

In Figure 42 we see a 2D field with evenly
spaced particles. We observe the resulting
density field as a sideways surface plot in
Figure 43. Here it becomes evident that the
smoothing length used was is 5, which is
why the density drops to zero at a distance
of 5 from the outer particles.

We now calculate the color field C as seen in
Figure 44 and then the gradient of this field
∇C which is shown in Figure 45. We note
that the gradient ∇C

|∇c| is the surfaces normal
vector pointing into the region of higher den-
sity. If we now consider the Laplacian of the
field ∇2C then we can calculate the actual
curvature of the edge. This is seen in Figure
46.

Figure 42: A group of evenly spaced parti-
cles in 2D. Each particle has the mass m =
1kg

We now have a method of locating areas
with high curvature, which represents the
edge of the sampled field, and we can find
the normal vector of this surface. We will be
using this later in section 9.3.

8.7 Variable spatial resolution

When a particle is left without any neigh-
bors inside its support radius, then the field
value at its position will be equal to the par-
ticles own value. This makes sense since it
is an average of one value. It is, however,
then a quite coarse sampling of the field, and
unless the field intensity just happens to be
identical to that of a smoothing kernel, it will
be a bad approximation at any non zero dis-
tance away from the sample point itself. A
recommended minimum number of support
particles is 57 for 3D [Liu and Liu, 2003].
The values may vary slightly from model to
model depending on the level of smoothness

49



Part I - Snow 8. Smoothed Particle Hydrodynamics

Figure 43: A density field for the particles
in Figure 42 is seen as a surface plot from
the side. Note how the density remains con-
stant inside the particle field and then drops
off sharply away from the particles, but still
remains non zero until a distance of 5 from
the outermost particles.

desired.

It is interesting to note that, if the num-
ber of support particles should be kept at a
fixed value, and the particles are very tightly
packed, then the smoothing length h should
be very small. This would mean that the
kernel would approach the delta function at
which point there is no smoothing but rather
an accurate point sampling.

In [Liu and Liu, 2003] a method of adap-
tively changing the smoothing length is em-
ployed.

hn
i = hn−1

i
1
2

[
1+
(

Ntarget

Nn−1
i

)1/3]
(90)

where hn
i is the smoothing length for particle

Figure 44: A density field for the particles
in Figure 42 is seen as a surface plot from
the side. Note how the density remains con-
stant inside the particle field and then drops
off sharply away from the particles, but still
remains non zero until a distance of 5 from
the outermost particles.

Figure 45: The gradient of the color field ∇C
is seen to be the normal vector of the surface,
pointing into the non-zero density area.
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Figure 46: The Laplacian of the color field
∇2C is shown as a surface plot. Note how
the curvature is higher in the four corners
since there is a non-zero gradient along both
axis.

i at time step n. Ntarget and Nn−1
i are the op-

timal number of particles in the support and
the current number of particles in the sup-
port for particle i at time step n.

It is a reasonable practice to constrain the
smoothing length both upwards and down-
wards. This is to prevent the SPH discretiza-
tion from assuming that the field is defined
everywhere (using a large smoothing length)
when it may in fact be more localized, and to
prevent very small smoothing lengths which
will generally make the SPH model very
sensitive to large time-steps.

Using the above relaxation method, the
smoothing length can easily be adapted to
give a reasonable number of particles - both
for very densely packed regions and for
more sparsely sampled parts of the scene. It
has been brought to our attention that this
will make h be a function of time as well as

of space h(x, t) and we may have ∂h
∂ t 6= 0.

This is not something we have seen be-
ing considered in any other work, and we
will also ignore this for now. Addition-
ally, when integrating the systems deriva-
tives over time, as detailed in section 9.6, we
are in fact not adjusting the value of h in-
between full steps. This means that through
one whole integration step ∆t, h does not
change. This is not a problem since SPH
does not fail just because the perfect num-
ber of neighbors is not used, and because the
change is h is expected to be very small in
between steps

We will be using the above mentioned
method, but there is another method which
should be mentioned for completeness
when dealing with adaptive spatial res-
olution. In works such as [Hong, 2009,
Zhang et al., 2008, Adams et al., 2007] a
method is investigated where not only the
smoothing length is adaptive. The particles
themselves are adaptive in the sense that
they can split into more smaller particles
in areas where high resolution is required
and they can merge into larger particles
where the resolution is currently higher
than needed. This means that given a fixed
number of computational resources, those
resources can be put to use where they are
most used.

Finally, it should be remembered that no
smoothing length should be larger than the
minimal dimension of the spatial partition-
ing cells. This is described in section 9.5.
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9 SPH snow model

Building on the knowledge from the previ-
ous sections, we will now develop an ac-
tual snow model using the SPH method. It
should be noted yet again that we are not
simulating individual snow flakes, but vol-
umes of snow. That snow may be loose wind
block snow flakes or it may be tightly packed
ice crystals.

9.1 Dynamic rest density

We let the rest density of the snow develop
over time as the snow is compressed. This
is to let snow be compressed in an inelastic
fashion.

ρrest = ρrest +α(ρ−ρrest) (91)

where α is a temporal smoothing factor with
0 < α ≤ 1. The higher the value of α the
faster the density changes. Given that snow
does have a (tiny) elastic region before fail-
ure and given that particles may have some
density fluctuations due to integration in-
accuracies, we should let the system have
a brief time during which it can recover
from higher compression, before changing
the rest density all the way to the current
density.

Note that the above equation will also let the
rest density decrease over time if, for some
reason, the compressed snow particles are
removed from each other again.

If the expression is used in that form for
some rest density, then we will have a per-
fectly elastic material, which is not realistic.

For that reason, we let the rest density evolve
over time as

∂ρrest

∂ t
= ρrest +β (ρ−ρrest) (92)

β is a value between 0 and 1 defining how
quickly the density changes. The idea is that
when snow is compressed, it will resist the
compression, but only initially. After being
compressed to some new higher density, the
snow comes to rest at this density - the yield
strength has been exceeded and snow has de-
formed plastically. There is then no internal
pressure trying to return the material to its
previous density.

9.2 Particle acceleration

The total rate of change of velocity is given
by

dui

dt
= apressure

i +aviscosity
i +awind

i +agravity
i

(93)

where each a-value is the acceleration result-
ing from that term.

9.2.1 Pressure

Objects are pushed away from areas of
higher pressure towards areas with lowerer
pressure. Therefor knowing the pressure
field p, or rather its gradient ∇p, lets us cal-
culate the pressure force. The force density
is then the negative gradient (94).

52



Part I - Snow 9. SPH snow model

fpressure =−∇p (94)

The negative pressure gradient is calculated
through direct summation.

−∇pi =−∑
j

m j
p j

ρ j
∇W (ri− r j,h) (95)

and the particle pressure is found from the
EOS as detailed in section 6.11.

We note that, if a pair particles interact, and
they have different pressure, they will not
experience the same pressure force, given
that the gradient kernel is zero at the loca-
tion of the particle in question ∇W (0,h) =
0. Each particle therefore calculate a force
based on only the pressure at the other par-
ticles, which in all likelihood, is not the
same throughout the domain. For this rea-
son the equation should be made symmetric
[Liu and Liu, 2003] by including the current
particle as well in an average pressure term.

−∇pi =−∑
j

m j
pi + p j

ρi +ρ j
∇W (ri− r j,h)

(96)

That expression is the force density. To ar-
rive at acceleration, we divide the force den-
sity with the density, or in the symmetric
case, the densities

apressure
i =−∑

j
m j

pi + p j

ρ2
i +ρ2

j
∇W (ri− r j,h)

(97)

9.2.2 Viscosity

The viscosity force is given by the Laplacian
of the velocity field ∇2u, multiplied with
the viscosity µ , which could be seen as the
strain rate multiplied with viscosity, as pre-
viously described in section 7 where the ex-
pression is given for strain rate dependent
viscosity.

f viscosity
i = µ∇

2u

f viscosity
i = µ ∑

j
m j

v j

ρ j
∇

2W (ri− r j,h) (98)

as in the case of pressure, the kernel is zero
at the particle itself, meaning that the expres-
sion is not symmetric. It can be rewritten as

f viscosity
i = µ ∑

j
m j

v j− vi
1
2ρ j +

1
2ρi

∇
2W (ri− r j,h)

(99)

Again we have a force density which lets us
write the acceleration as

aviscosity
i =

1
ρi

µ∇
2u

aviscosity
i = µ ∑

j
m j

v j− vi
1
2ρ j +

1
2ρi

∇
2W (ri− r j,h)

(100)

9.2.3 Gravity

Gravity is a constant force which pulls the
particle down. In our simulation, down is
defined as the direction −y.
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Earlier we presented a force which included
the buoyancy of the air. Given that this value
is very small, we do not use it in the actual
implementation.

Fgravity
i = mig (101)

where g is the gravitational acceleration g =
9.82m/s and mi is the SPH particle mass.

The acceleration is then

agravity
i = g (102)

9.2.4 Wind

The wind forces are the drag forces from rel-
ative wind velocity for a particle. Note that
the wind velocity is found as described later
in section 13.1.

We repeat the drag equations from section
4.2.

∆u = uair−uparticle

Fdrag
i =

1
8

CDρπD2
P∆u2 (103)

where CD is the coefficient of drag in air, ρair
is the density of air and ∆u is the relative
velocity between the particle and the air.

CD =
24

Rep
+

6
1+
√

Rep
+0.4 (104)

Where Rep is the particle Reynolds number.

Rep =
Dp

ν
u (105)

This gives the acceleration form drag on the
particle i.

adrag
i =

1
8mi

CDρπD2
P∆u2 (106)

where CDρπD2 can be calculated before-
hand.

9.3 Particle ejection from surface

We need to somehow model the SPH parti-
cle ejection from the surface given a certain
friction velocity. From section 4 we have

u∗ =
u

20
α = 0.083m
β = 0.19m/s
λ = 0.00052m

me ject =

(
4
3

π

[
D
2

]3

900kg/m3
)
(αe

u∗
β +λ )

(107)

where me jast is still the ejected mass per
square meter per second.

It should be repeated that this ejection model
is a rough estimate which needs calibration,
but we have implemented it as follows.

Every particle identified as a surface parti-
cles, as described in section 8.6, has a prob-
ability of ejecting depending on friction ve-
locity. As seen in section 4 the ejection is
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commonly 20◦. We interpret this as the ejec-
tion being in the plane spanned by the sur-
face normal vector n and the wind velocity
vector u, and the ejection angle being 20◦

from the wind velocity vector towards the
normal vector. Since the ejection velocity is
equal to the friction velocity u∗, we replace
the wind velocity vector by the friction ve-
locity vector. This gives us the ejection ve-
locity vector

e =
(

cos(20◦)n+ sin(20◦)
u∗
|u∗|

)
|u∗|

(108)

and knowing the mass ejected per second
per square meter, and the SPH particle
mass gives us the particle ejection rate R =
e jections/s.

R =
me ject

m
(109)

We now need to relate this to an ejection
probability Pe ject each second. The number
of SPH particles SPHn per unit volume m3

is derived from local density ρ and parti-
cle mass m, which is here assumed to be the
same for every particle.

SPHn =
ρ

m
(110)

If we assume the particles are spaced equally
in a regular cubic grid, we can get the num-
ber of particles along each axis axisn and
from that the particles per unit area SPHnA

axisn =
3
√

SPHn = 3

√
ρ

m

SPHnA = axis2
n =

(
ρ

m

) 2
3

(111)

Now we know how many particles there are
per unit surface and we know how many par-
ticles should eject every second.

This lets us write the ejection probability, for
every surface particle, every time step ∆ as
P∆t

e ject

P∆t
e ject = ∆t

R
SPHnA

P∆t
e ject = ∆t

me ject

m
/

(
ρ

m

) 2
3

(112)

To sum this up, we now know that if a par-
ticle is a surface particle (section 8.6), then
the probability that it should eject during a
time step is given by (112), and if it ejects,
it will be adding the ejection velocity vector
from (108) to its current velocity.

9.4 Boundaries

As detailed in section 8.5, boundaries in
SPH need special treatment, and one such
boundary solution could be virtual mirror
particles on the other side of the bound-
aries. This is sometimes seen implemented
[Liu and Liu, 2003] by making a pass over
all particles before each step and creating ac-
tual boundary particles. While this is con-
ceptually simple, it can result in a very large
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number of particles when the model has a
high particle count and a large portion of
those particles are resting on some bound-
ary. There is the additional problem that
if thin obstacles are contained within the
scene, then one particles virtual boundary
particle may be created in such a way that it
affects the particles on the other side of the
obstacle.

The solution we have devised for our work is
to use the ordinary neighbor location from
section 9.5 and expand this with condi-
tional behavior whenever the particle, seek-
ing neighbors, is close to a boundary.

If a particle is within one smoothing length
from a boundary, then it will be interacting
with that boundary. In that situation it will
need to create a mirror image of itself on the
other side of the boundary. If the particle has
a neighbor particle which is also close to a
boundary then that neighbor will need to be
mirrored as well. Rather than explicitly cre-
ating these mirrored boundary particles, this
takes place in the ordinary neighbor location
as seen in algorithm 1.

Note that if a particle A is not a neigh-
bor to particle B, then A is also not a true
neighbor of the boundary mirrored B. This
is snown in section 8.5 where is is seen that
assuming the opposite will in fact result in
errors, although they would be rare. This
means that when accumulating influences
from particles and their virtual boundary
mirrored counterparts, we need only con-
sider the true neighbors and their virtual ver-
sions. This makes it somewhat easy to ex-
tend the normal SPH contribution calcula-
tions with boundaries.

All our boundaries are part of obstacles. An

obstacle could be a cube inside the scene,
which represents an impenetrable building.
The cube then consists of 6 boundaries and
any particle closer to the cube than one
smoothing length will be affected by it. For
any convex volume, it is true that any outside
point will be separated from that volume by
a plane containing one of its boundary sur-
faces. This is illustrated in Figure 47.

A particle may be close to several bound-
aries, each belonging to the same obstacle
as seen in Figure 48 where the upper left
red particle is close to both the upper and
the left boundary of the square obstacle. In
that case, the particle will have to be mir-
rored over first one boundary (that is the blue
particle) and then over the second boundary
(to the green particle). For convex obstacles,
this will always result in a boundary parti-
cles which is on the inside of the obstacle
and which contributes with exactly what the
real particle has lost to the inside of the ob-
stacle as explained in section 8.5.

Obstacle closeness Every obstacle is sur-
rounded by an axis aligned box which is one
smoothing length larger than the contained
obstacle in every dimension. It is easy to
quickly find if a particle is close to an ob-
stacle or not this way, by determining if the
particle is inside the bounding box.

Boundary closeness To determine if a
particle is close to a given boundary, the par-
ticles position p is projected into the bound-
ary plane, along the planes normal vector n,
and the distance d between plane and par-
ticle is calculated. A positive distance in-
dicates that the particle is above the plane
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Input: list of particles
Output: forces F for each particle
foreach particle P do

F← 0
foreach neighbor N do

F← F+calculateForces(P,N)
if N is near boundary then

M← N
foreach boundary B do

M← mirror(M,B)
end
F← F+calculateForces(P,M)

end
end

end
Algorithm 1: Extended SPH force calcula-
tion for particles already determined to be
close to an obstacle consisting of bound-
aries.

and if this distance is less than the smoothing
length, then the particle should be mirrored
over the plane.

D =
|p ·n|
|n|

(113)

Concavity An obstacle must be defined as
a convex volume. If concave obstacles are
required, they can be constructed from a
number of convex shapes.

9.4.1 Domain boundaries

While the ground and obstacles inside the
domain are defined as impenetrable bound-
aries, the sides of the domain is not. one of
the SPH models strong sides is that the sam-

Figure 47: A convex obstacle is always sep-
arated any outside point by a single plane
(line in 2D) along one of its edges. The point
A is separated from the obstacle by the red
plane, B by the green plane and C by the
blue. Each plane runs along the edges of the
obstacle.
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Figure 48: A square (convex) boundary is
drawn in solid black and is surrounded by an
inflated version, light gray, of itself which is
expanded one smoothing length in every di-
rection. True particles are rendered in red.
Some are far enough from the black bound-
ary to not be affected by it. Others are less
than one smoothing length from the bound-
ary - inside the gray expanded version - and
are affected. If the particle is above one
of the boundary edges, it ”spawns” a vir-
tual boundary particle, seen in green or blue,
which is the mirror image over the boundary.
If that particle is also close above a bound-
ary, it will again be mirrored into a virtual
particle. Only the final green boundary par-
ticles are used. The single red particle inside
the boundary is an invalid position which
should never be seen.

pling resolution follows the material. There-
fore we could track snow infinitely.

The wind, however, is contained inside a box
256m×256m×256m, and therefore there is
no point in tracking SPH particles as they
exit the domain. Whenever a particle moves
over the boundary, it will be re-initialized in-
side the scene at random x,y position at at a
height min≤ h < 255 where min is a simula-
tion parameter defining the height of obsta-
cles and estimated snow layer.

The reason snow is not always created at the
top of the domain is that the wind may blow
it through one of the side boundaries before
it has a chance to land on the ground. The
vertical fall may simply be too large.

While it is not seen to be a problem creating
a SPH particle in the zone with suspended
snow, due to the very low density there, it
is a problem creating articles in the region
of rested snow and inside obstacles, and do-
ing so would certainly make the simulation
unstable, when particles could suddenly find
themselves directly on top of one another.

9.5 Particle interaction and
neighborhoods

In order to find the particle-particle forces,
for each particle we need to determine which
particles are inside its support radius. This is
where SPH simulations tend to spend most
of their time, and it is therefore important
to give the matter great consideration if the
simulation is to run fast. This section is
therefore quite comprehensive.

The neighbor location is also a very paral-
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lel procedure. Every particle needs to locate
its own personal neighbors and calculate the
forces resulting from the interactions. This
is an area where the massive parallelism of a
GPU can be put to good use.

Brute force The naive method of find-
ing particles, which are within the relevant
neighborhood, is to calculate the distance to
every other particle, and consider it a neigh-
bor when the distance is less than the neigh-
borhood radius. This is brute force, and
for large groups of particles, it is intractable
with O(n2).

Recursive tree A more common, and cer-
tainly more clever, method for fast neighbor
search, implements a tree structure which is
refined to a level where each leaf contains
a single particle. Such a tree, being it a
kd-tree, oct-tree or some other type of re-
cursive spatial subdivision, has a depth of
O(log n) and for n particles to find their
neighbors we have O(n log n). These meth-
ods do, however, require that the tree is re-
built every time the particles move relative
to each other. While tree construction is also
O(nlogn), which is then the upper bound on
the complete method with tree construction
and tree search, the individual steps in the
construction and search may still be com-
plex and slow enough to make the method
less than optimal.

When coding for a GPU there may arise ex-
tra complexities in an algorithm, such as tree
search, which stems from the fact that the
usual top down tree construction is by nature
serial, and that the tree search is by nature re-
cursive, while GPU code is neither. This has

been addressed in [Garcia et al., 2008] and
in [Ajmera et al., 2008] where kd-tress have
been implemented on GPU, and with good
results. The algorithms are however more
complicated than alternative simpler meth-
ods, and we have decided to keep kd-trees in
mind for later optimization, but to disregard
it now.

Regular grid An alternative to a recursive
spatial subdivision is to split the domain into
a regular grid as seen in Figure 49. Here
every cell will contain zero, one or several
particles. If the cells in the grid are larger
than or equal to the size of the support ra-
dius of the particles, it is simple to locate
the neighbors. This is done by looking in
the cell that the particle itself is inside as
well as the cells adjacent to the particles cell.
This will amount to 27 cells including the
cell containing the particle itself. It should
be noted that the only reason this is a vi-
able solution is that the particles have a finite
support radius. In astronomy, where SPH
originate, gravity plays a vital role and the
range of gravity is infinite. For this reason
SPH in astronomy always employs an actual
tree-like subdivision scheme since a regular
grid would offer no improvement over brute
force when considering an infinite support
radius.

For a regular grid and finite support radius.
the task is simplified to letting each particle
determine which cell it belongs to and when
looking for neighbors to look in the adjacent
cells. This can easily be accomplished in
parallel as described later.
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9.5.1 Regular spatial grid (spatial hash)

Due to the in-feasibility of brute force for
large number of particles and the complexity
of spatial trees, we choose to implement a
regular grid.

It is often seen, as in [Ihmsen et al., 2011,
Goswami et al., 2010], that the grid is de-
fined so that the cells are equal to the
smoothing length of the particles. The
smoothing length is generally small and this
means that the grid is very fine. To avoid
storing a huge number of cells, of which
most will be empty, the grid is constructed
as a 3D hash table where each grid cell will
map into one unique bucket in the hash ta-
ble and where each bucket will contain par-
ticles from several cells. This one to many
relationship makes it possible to both have a
very fine grid and to have an infinite scene.
The hash index of a particle is calculated
quickly using the following equation

H(x,y,z) =
[( x

d
p1
)
xor
( y

d
p2
)
xor
( z

d
p3
)]

%m

(114)

where p1..3 are large prime numbers, m is the
size of the hash table, d is the size of the grid
cell and ”%” is the modulus operator.

One downside of this hashing is that parti-
cles, which are located far apart in the scene,
will map to the same hash bucket. This
means that we lose spatial coherence, and
that particles will be handled in very hetero-
geneous groups.

Another downside, related to the small cells,
is that particles generally need only move

Figure 49: A regular grid mapped to a hash
table. Notice how several cells map to the
same bucket.

very little before they are moving into new
cells. This means that we need to update
the cell location of all the particles quite of-
ten, which can be avoided when using larger
cells. This is described in section 9.5.8.

For those reasons, we use large cells. This
could be considered a collision-free hash
method. We can do this because we also ac-
cept that our scene is finite. This is not a real
problem, considering that the air simulation
using the Eulerian Finite Volume Method
also requires a finite scene.

We define the cells size as the domain
size divided by 256 to create a grid with
256x256x256 cells all in all. That is almost
17 million cells.

While the cells are large, we actually have
quite a lot of unique cells. This is not a prob-
lem, since each cell will not take up much
storage. It will only serve as a reference into
the list of particles.

The benefit of this grid scheme can be seen
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by an example. If we have 2 million parti-
cle distributed evenly in the scene, then each
particle should consider all other (2 million
- 1) particles as potential neighbors and cal-
culate the distance to them, if using the brute
force method. Using the 256x256x256 grid,
we have 2 million particles divided by 2563

cells equal to 0.119 particles in each cell.
Having only 27 cells to consider, that is 3.22
particles which may or may not be neigh-
bors.

9.5.2 Construction of cell grid

In this part, we will be dealing with some
GPGPU specific performance considera-
tions. If this is unfamiliar territory, we have
a brief introduction in the appendix.

A simple implementation of the regular cell
grid is to have a single list in memory with
an entry for each cell. This list is called the
cell list CL and it has an entry for each cell in
the regular grid, whether empty or full. The
entry contains a reference to the first particle
termed First and a count of the particles in
the cell termed Count.

The particles should be stored in a sorted
list called the particle list PL and this list
should be sorted based on the particles cell
index, so that all particles in any given cell
will be stored sequentially in the list. This
allows us to look in CL and see both how
many particles are stored in any particular
cell as well as the first particle in PL be-
longing to that cell. This method is widely
used and seen in several other works such as
[Ihmsen et al., 2011, Goswami et al., 2010,
Krog, 2010, Capone, 2010].

Figure 50: The Cell List CL containing n
entries for n cells. Each entry containing in-
formation of the first particle in the cell as
well as the number of particles in the cell

Acronym Description
CL Cell list, list of all cells
CI Cell Index, index of some cell in CL
PL Particle list, list holding all particles
PI Particle Index, particles position in PL
P Particle, some particle

The method works as follows. Each particle
has a particle index PI which is not stored
with the particle but rather derived from the
particles position in the PL. Thus the parti-
cle with PI=5 will be stored at PL[5]. When
updating the cell grid, the particles each re-
calculate the index of the cell to which they
belong. This is called the Cell Index CI. The
CI is stored as an attribute of the particle it-
self. Then the particles are sorted based on
their CI. This results in a usable list of par-
ticles which has particles belonging to the
same cell follow sequentially.

To update the cell grid, the CL is initialized
so that each CL.Count is set to zero and each
CL.First is set to some large value greater
than the number of particles.
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Now each particle P with index PI writes
into CL[PI].First min(CL[P.CI].First, PI).
This will cause all particles in a given cell to
attempt to write their particle index PI into
the same CL.First, but eventually only the
particle with the lowest index will have its
value stored. At the same time, each parti-
cle increments the counter CL.Count of its
cell so that the count will show how many
particles belong to the cell.

1 initialize CL

2 parallel foreach particle P in←↩
PL

3 P . CI = calculateCellIndex ( P )
4
5 sort ( PL after CI )
6
7 parallel foreach particle P in←↩

PL

8 atomInc ( CL [ P . CI ] . Count )
9 atomMin ( CL [ P . CI ] . First , PI )

It should be obvious that the part of this up-
date which takes the longest time is the sort
which is O(nlogn) as opposed to the other
operations that are O(n). The sort can uti-
lize concurrent execution on the GPU, but
not perfectly. The cell index calculation, and
atomic increment and min, operations are on
the other hand O(n) and they can be per-
fectly parallelized. There can be overhead
from atomic operations accessing the same
memory location, and there are a limited
number of atomic operation units, but on the
Fermi architecture this is no longer consid-
ered a great problem. It should, however, be
kept in mind that atomic operations access-
ing the same variables, should be interleaved
in time so that overlap is as small as pos-

sible. According to [Goswami et al., 2010]
the sorting sort can still be done relatively
fast using parallel radix sort and taking ad-
vantage of the fact that the particle list will
form an already almost sorted list. In our im-
plementation we use the parallel radix sort
of the Thrust library for GPGPU computing
http://code.google.com/p/thrust/.

9.5.3 Neighbors in cell grid

To find the potential neighbor particles in
the same cell as the querying particle itself
it only a matter of looking up the particles
own Cell Index CI and looking at the Cell
List CL[CI] to find the first particle in the
cell as well as the number of particles. As-
suming the first particle is F and the number
of particles is n, then all particles in the same
cell as the querying particle is stored in the
Particle List PL[F..F+n].

To find the potential neighbor particles in
any of the neighboring 26 cells, the same
procedure is repeated, only now we use the
Cell Index of the Neighboring cells. How
this is actually done depends on how the 3D
structure of the cell grid is unwrapped into
1D indices, which is the subject of the next
section.

9.5.4 Load balancing

In distributed computing the concept of load
balancing is an important one. What this
means is that for n equally powerful process-
ing units, we desire to partition the work into
n equally demanding work items. This way
we do not overburden one unit while some
other unit stands idle.
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If it is unclear how exactly the total work
is split into equal sized jobs, the simple so-
lution is to partition the work into a much
larger number of smaller jobs. A number
much higher than the number of processing
units. Then each processor can work on a
subtask, and if it just so happens that the as-
signed subtask is easy to complete quickly,
then the processor can take on a new small
job.

This way a processor may complete a large
number of tiny jobs or a single large job,
and the processors will generally complete
at the same time. Taking this partitioning to
the extreme with an infinite number of in-
finitely small jobs, the processing units will
complete exactly at the same time.

There is however an overhead to loading and
unloading jobs which makes this intractable.
Furthermore, every job has some sequen-
tial operations which prevents it from being
sliced into infinitely small sub tasks.

When programming for the GPU, we have a
number of multiprocessors MP which have
identical performance as outlined in table 1.
The on chip memory on each MP is divided
into blocks of 16kB and 48kB where one
is used for shared memory and one is used
for L1 cache. It is user configurable which
block is used for what.

We assign them work through thread blocks
consisting of an integer number of threads.
Each block must have the same size. How
large a block can be and how many blocks
any MP can load depends on how demand-
ing it is to run the kernel code for a block.
If it is a very light weight work, then the
multiprocessors can load and process a large
number of threads at one time. This can be

partitioned into many small blocks or a sin-
gle large block. Complex code will require
a larger number of registers, and possibly
shared memory than simple code will.

To illustrate the complexity of this, we run
through a short example.

Consider a kernel where a thread requires 26
registers and no shared memory. We could
load the maximal number of threads on the
MP, which is 1536. This would then require
1536 threads x 26 registers/thread = 39936
registers. This requires more registers than
are available, so we need to cut down on the
threads. Given the register requirements, we
can only load 32768 registers / 26 registers /
thread = 1260 whole threads.

The question is then how we best partition
1260 threads into blocks. It could be 3
blocks of 315 threads which would fill the
MP entirely by using all registers. There
is a caveat though. Threads are executed
in batches or 16 threads called a half warp.
These threads execute in truly parallel lock-
step. 315 is not a multiple of 16, so the pro-
cessor should load either 19x16 threads =
304 threads or 20x16 threads = 320 threads.
We only had registers to serve 315 threads,
and now we have to settle for only loading
304 threads. We now have 3 blocks of 304
threads or 912 threads in total and use 912
threads x 26 registers/thread = 23712 reg-
isters out of the available 32768 registers.
Now we are wasting registers, and further
more, we better hope our job splits easily
into blocks of 304 sub tasks.

The next question to ask is how the 304 sub
tasks relate to each other. Do they access
the same areas of memory, so they can co-
operate around the cache and do they pass
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NVidia GTX 580 Fermi architecture
Multiprocessors 16
Max threads in block 1024
Max threads on MP 1536
Registers per block 32768
Max blocks per MP 8
Shared memory per MP 16kB/48kB
L1 cache per MP 48kB/16kB
Threads per warp 32
Threads per half warp 16

Table 1: GTX580

through the same code paths in their half
warps so we avoid warp divergence?

The above example was only meant as a
brief example of the complexities of optimal
load balancing. Given various constraints,
not every job can be easily partitioned into
optimal sized blocks. For this reason, we
need to consider carefully how to partition
the job.

Note that the MP has 32 alus and can there-
fore run in true parallel for 32 threads. We
only need extra threads to hide latency.

When a thread block completes execution,
it will be unloaded from the MP, and a new
block will be loaded and executed. This
continues until all blocks have completed.
An integer number of blocks can be loaded
onto a multiprocessor,all blocks must have
the same number of threads and the max-
imal simultaneous number of threads is a
constraint. This means that to fully load the
processor, we need to figure out a block size
which will fill the processor completely with
threads.

when a block completes , it is unloaded and
a new one can start. A fast block is there-

fore ok, as is a slow block, but it is opti-
mal if all threads are equally hard so they all
complete at the same time. In fact we just
need the threads in a warp to complete at the
same time, but THAT is desired! therefore
threads should be homogeneous inside a half
warp which makes the same requirement for
a block in general.

Lets assume we can have n simultaneous
threads. We now seek a block size

Having decided how to split the particles
into smaller sub domains is only the first
piece of the puzzle. We now need to con-
sider how the particles should be stored in
memory to give the best results. While
the spatial domain for the simulation is 3D,
memory is 1D. This means that we need to
unfold the 3D spatial partitioning grid into a
1D chain of cells. This can be done in sev-
eral ways which all have their pros and cons.

We will in the following consider a 3D lin-
ear type unfolding as well as a space filling
curve SFC based method.

If we assign particles to thread blocks based
on their initial index, first particle to n’th
particle to thread block 0 and n’th+1particle
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to 2n’th particle to thread block 1 and so
on, we are likely to have particles with
very different spatial positions in the same
thread block. Different spatial positions will
mean different sets of neighbors and gener-
ally very different particles. This is not op-
timal. If we instead assign all particles in a
given spatial cell to a thread block, then we
have the problem that not all cells have the
same number of particles. Some will have
many particles and others will have very few,
or none at all. This means that we cannot as-
sign the perfect number of particles to the
thread blocks in order to obtain full occu-
pancy.

We seek to obtain full occupancy on the
streaming multiprocessors MP. For this to
happen, we need to launch a precise num-
ber of threads on each MP. What that precise
number is, it depends on the actual hardware
being used and it depends on the complexity
of the thread code being executed. To bet-
ter utilize the cache, we also seek to handle
particles close in space in the same thread
block. Two particles which are neighbors
will commonly be in the same cell and there-
fore search for other neighbors in the same
set of 28 cells. They will also tend to share
the same set of neighbor particles with a few
exceptions. This means that they will want
to access the same memory locations and
that that memory will commonly be quickly
accessible through the cached.

We will be using a Space Filling Curve
SFC as described in [Goswami et al., 2010]
where each domain subdivision cell has
a SFC-index which indicates its location
along the curve.

We use a SFC only to ensure that particles

close in space are generally also close in
memory. This does help in memory locality
and cache utilization, but the primary goal
is to be able to easily select n particles from
a linear segment of particles in memory and
have those particles in that linear segment be
from the same spatial neighborhood.

A 3D space filling curve, as seen in Fig-
ure 51 is a special form of a winding curve
which spans the entire unit cube. It does
so in one continuous path without the large
jumps as seen in a linear ordering in Fig-
ure 52, which is the more common form of
memory layout.

There exist a number of space filling curves,
which are closely related to fractals in that
they can be continuously refined to an infi-
nite resolution and when doing so they show
a clear self similarity at all detail levels. The
first, and probably best known is the Peano-
Hilbert curve, but we choose to use the sim-
pler Z-order Morton curve since it is very
simple to implement by bit interleaving as
described in section 9.5.5.

It is clear that, for the linear ordering, parti-
cles which are on the same horizontal line
are somewhat close on the curve except
when the line shifts to the line above or be-
low. In contract on the Z-order curve, parti-
cles are generally close, on the curve, to both
the neighbors above and below as well as to
the left and right side. Additionally all parti-
cles in the same power of two block are con-
tained in a continuous segment of the curve.
It is not clearly seen that the Z-order curve is
better than the linear ordering in this small
example, but as the number of dimensions
of the space spanned by the curve grows,
and as the size of the dimensions grows,
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Figure 51: A particular form of space filling
curve is the Z-order curve. here shown in 2D
for four different detail levels. [Wikimedia
commons]

the linear ordering will be increasingly bad
since it prioritizes only 1D neighbor rela-
tions along a single axis, while the Z-order
curve weights all three axis equally. If we
consider a particle and its 4-neighborhood
in 2D, as seen as blue lines in Figure 51 and
Figure 52, we see that using the linear order-
ing, the distance to the neighbor above and
below will grow as O(

√
n) for all particles

resulting in O(n
√

n) while the same does
not happen for the Z-order curve. For most
particles it does not change the path dis-
tance to the neighbors at all that the dimen-
sions of the domain grows. As drawn in the
figures, the distances in the linear ordering
grow from (1+1+4+4=10) to (1+1+7+7=16)
while the Z-order curve distances grow from
(1+3+2+6=12) to (1+3+2+6=12). It is clear
that for very small curves in low dimensions,
the Z-order curve is not as good as simple
linear ordering. For 1D, the linear ordering
is optimal in fact, but for higher dimensions
and for longer curves the spatial locality is
much better carried over to 1D memory lay-
out with the Z-order curve.

Figure 52: Linear ordering shows a number
of very large jumps at the end of each line.

Figure 53: Particles colored according to
their memory order using the method of lin-
ear ordering. Note how the particles are or-
dered as a linear gradient.

Figure 54: Particles colored according to
their memory order using the SFC method.
Note how the particles are ordered in square
shapes which are contained in even larger
shapes.
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9.5.5 Calculating SFC index by bit in-
terleaving

It is quite easy to calculate a 3D SFC in-
dex by using bit interleaving. In Figure 55
the column and the row indices of a 2D
curve are printed in binary. Seeing that
the curve takes one step along the columns,
then one along the rows while stepping back
along the columns and then along columns
again before jumping back up the rows and
advancing along the columns, there is a
strong resemblance with how the bits in a bi-
nary number increases and decreases when
counting in increments of one.

This pattern is used in calculating the curve
index by letting the binary representation of
the columns control every other bit in the
curve index and letting the binary represen-
tation of the rows control the other bits. If
we interleave the bits so that the n’th bit in
the column index control the 2n′t bit in the
curve index and so every n’th bit in the row
index control the 2n+ 1′th bit in the curve
index, then we get the numbers seen in Fig-
ure 55. While the example is in 2D, this can
easily be extended to 3D, or even higher di-
mensions, by still interleaving the bits so the
index along each dimension controls every
n’th bit in the curve index for a n dimen-
sional curve.

To optimize the speed of this calculation, we
do not extract every n’th bit in the x,y,z in-
dex in our 3D model and mix them together
one by one. Instead we pre-calculate a ta-
ble of indices where the bits have already
be spaced for 3D use so that 1111 becomes
001001001001 as seen in table 2. This way
we can quickly interleave three different in-

Original Bit spaced version
00000000 000000000000000000000000
00000001 000000000000000000000001
00000010 000000000000000000001000
00000011 000000000000000000001001
00000100 000000000000000001000000
.....
11111111 001001001001001001001001

Table 2: An example of the numbers
0,1,2,3,4 and 255 in bit spaced form

Figure 55: A Z-Curve can easily be con-
structed using bit interleaved indices. Notice
how every other bit is taken from the column
and row indices repectfully when concate-
nating the Z-curve index

dices by using two left shift operations and
two OR operations. Given that shifting a bi-
nary number left two times is the same as
multiplying with 2 two times, it can be writ-
ten simply as

SFC(x,y,z) = 4Bit(z)+2Bit(y)+Bit(x)
(115)

where x,y and z are the integer spatial coor-
dinates, and Bit(x) is the bit spaced version
of the number x, as just mentioned.
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9.5.6 Variable smoothing length

Generally the cell grid should have a cell
size larger than or equal to the particles sup-
port radius, in order to have simple access to
potential neighbors in the grid. When us-
ing variable smoothing lengths, some par-
ticles could, however, have supports which
are larger than the cells in the grid. The
solution would generally be to either make
sure the cells are initially large enough, to
change the cell size dynamically or to take
into account more than the closest 26 neigh-
bor cells.

Neither solution is very attractive, but if the
grid is laid out along a space filling curve,
then this can be done more easily.

When using the SFC layout, it is trivially
easy to use a cell grid with a cell size of S
as if it was of size (2n)S for any positive n.
This is due to the fact that any power of two
block in the grid will consist of sequential
cells as seen in Figure 56. It is evident that
we can equally well consider the elements
in the grid as arranged in one large cell, four
smaller cells or 16 even smaller cells. This
is however not a feature we will be taking
advantage of in this project.

9.5.7 Recalculate or store neighbors

We could generate a list of all neighbor in-
teractions over all particles and once and for
all calculate the different weight functions
among every pair or neighbor particles. Af-
terwards, we could run through this list and
distribute the interactions with one thread
per interaction. This would avoid having to
recalculate the weights repeatably, and for

Figure 56: Note how the elements in any
power of two block comes in order and how
there are small distances inside any power of
two block, while there are longer jumps be-
tween the end of one block and the start of
the next.

Figure 57: A 3D block of particles with
color according to their memory location .
Note the power of two blocks in all dimen-
sions
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each particle, (double the work) but it would
result in different threads adding forces to
the same particles, which should have to be
atomic operations. Those have the problem
that threads may be paused while waiting for
other threads to write their result to the par-
ticle.

Alternatively we could make simpler code
which quickly finds the neighbors and cal-
culate, what needs calculating.

The two approaches have been tested in
[Ihmsen et al., 2011] and the conclusion was
that the overhead of either dynamically
adding neighbor lists or atomically writing
into existing lists made the simple recalcu-
lating method just as fast.

Having to choose between two equally fast
methods, where one is simpler than the
other, we opt for simplicity and recalculate
everything.

9.5.8 Cell update frequency

In the cell grid, we must recognize particles
as neighbors if they SPH neighbors, but at
the same time it is not imperative that we
recognizes particles as non-neighbors if they
are not SPH neighbors. It will be wasteful to
look at potential neighbors, which are in fact
not true neighbors, but it will not cause any
errors.

The closest any two particles can be in
the cell grid, without being in each others
cell neighborhood, is min(∆x,∆y,∆z) where
∆x,∆y and ∆z are the cell sizes along the x-
axis, the y-axis and the z-axis. This is shown
in 2D in Figure 58.

If we now consider two particles, which are
not in each others cell neighborhood, then
they will obviously not be neighbors in the
SPH sense of the word either. We have al-
ready stated that a cell should always be at
least as large as the maximal SPH smooth-
ing kernel radius. If one or both particles
now move over a cell boundary, they will be
neighbors in the cell grid - they may even
end up in the same cell - but it is not a cer-
tainty that they are also neighbors in the SPH
way, which is defined as

|p1− p2| ≤max
h1,h2

(116)

where |p1 − p2| is the distance between
the particles and maxh1,h2 is the maximal
smoothing length of the two particles.

This is seen in Figure 59 where the pur-
ple particle is now in the red particles grid
neighborhood, but not in its SPH neighbor-
hood.

Give the minimal distance between particles
outside cell grid neighborhood and given the
maximal distance at which the two parti-
cles become SPH neighbors, we can derive
a minimal time it will take for the two parti-
cles to go from not being cell grid neighbors
to being SPH neighbors. This time will be
based on the maximal particle velocity.

∆t ≤
min∆x,∆y,∆z−maxph

2maxpu

(117)

Here ∆t is the upper bound on time inter-
val between cell grid updates. The other
∆’s again signify the dimensions along each
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coordinate axis, ph is particle smoothing
length and pu is particle velocity.

What we state is that the minimum dis-
tance a pair of particles should move to-
wards each other is the cell size minus the
largest smoothing length. The time it takes,
to move this distance, is found by dividing it
by two times the maximal particle velocity.
It is two times the maximal velocity since
the particles may be moving towards each
other with the effective relative velocity of
up to two times the maximal individual ve-
locity.

While the above time constraint could be re-
laxed by looking at every particle pair and
finding their actual relative velocity and ac-
tual distance, it would naturally be a huge
O(n2) problem which is not worth the trou-
ble. What we are looking for is just the max-
imal safe update interval, which is generally
much larger than the SPH time steps.

The larger the cells, the smaller the smooth-
ing lengths and the smaller the velocities, the
longer we can wait before updating the cell
grid. Given that the cell grid update can be
quite computational intensive, this is a most
desirable property. Strangely enough, we
have not seen this optimization employed by
other grid based SPH implementations.

Finally, note that any non zero time step will
be too long to ensure detection of particles
moving out of each others neighborhoods.
This is the wastefulness we mentioned ini-
tially.

Figure 58: The neighborhood of the red par-
ticles in the center is shown in green. Four
purple particles are each as close to a red
particle as possible - without entering the
neighborhood. In a grid with cell width ∆x
and cell height ∆y this minimal distance is
min(∆x,∆y).

Figure 59: A purple particle has moved into
a red particles cell grid neighborhood, but
even though the smoothing kernels touch,
neither particle is in the other particles SPH
particle neighborhood.
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9.6 Numerical integration

In order to advance the system forward in
time, from y(t) to y(t +∆t), we work with
two differential equations. One is the parti-
cle acceleration ∂u

∂ t from (93) and the other is

the particles current rest density ∂ρrest
∂ t from

(92).

We will use a somewhat expensive complex
of numerical integration [Kreyszig, 2005],
known as the Runge Kutta Feldberg method,
RKF.

This method was chosen because it is fifth
order accurate, which may allow us to use
larger time steps in the presence of stiff sys-
tems and because it has a built-in support for
variable time steps.

We will briefly describe the method in the
following, but refer the interested reader to
[Kreyszig, 2005] for further details. The
method will be written in terms of time in-
tegration, though, as with other methods of
numerical integration, it can integrate over
all types of domains.

The method used six evaluations to integrate
forward in time using both a fourth order and
a fifth order method, written below as y5

n+1
and y4

n+1. The difference between the two
methods gives an estimate of the error ε

The six function evaluations are defined as
k1..k6

yn = y(t)

k1 = ∆t f (yn)

k2 = ∆t f
(

yn +
k1

4

)
k3 = ∆t f

(
yn +

3k1

32
+

9k2

32

)
k4 = ∆t f

(
yn +

1932k1

2197
− 7200k2

2197
+

7296k3

2197

)
k5 = ∆t f

(
yn +

439k1

216
−8k2 +

3680k3

513
− 845k4

4104

)
k6 = ∆t f

(
yn−

8k1

27
+2k2−

3544k3

2565
+

1859k4

4104
− 11k5

40

)
(118)

yn = y(t)

yn+1 = y(t +∆t)

y5
n+1 = yn +

16k1

135
+

6656k3

12825
+

28561k4

56430
− 9k5

50
+

2k6

55

y4
n+1 = yn +

25k1

216
+

1408k3

2565
+

2197k4

4104
− k5

5
ε(t +∆t) = y5

n+1− y4
n+1 (119)

If the maximum norm of the error estimate
|ε|∞ is above some threshold we half the step
size and if it is below some other threshold,
we double it

∆t =


1
2∆t ; |ε(t +∆t)|∞ > εupper limit

2∆t ; |ε(t +∆t)|∞ < εlower limit

∆t ;otherwise
(120)

Note that ε(t +∆t) is the error at t +∆t and
that it is a vector. This means that we have
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an error estimate for every parameter of the
system. We can therefore look at the sensi-
tivity of individual properties of individual
particles.

We feel that this method is ”simpler” than
some other methods commonly used in in-
teractive physics simulations, such as as
Leap-Frog or the Verlet variants. This is be-
cause every parameter of the system is rep-
resented at the same points in time, which
is not true for Leap-Frog, and because those
parameters are given explicitly, which is
not true for the Verlet methods where some
derivatives are implicit and depending on
the time-step size. This in turn means that
re-computation is required, if the step size
changes.

RKF is however more computational inten-
sive, per step, using 6 function evaluations
compared to the 2 used in simpler methods,
but this can for stiff systems be offset by
larger time steps, which gives a larger total
simulation to computation ratio ∆t

computations .

Time-step constraints Usually the CFL
condition [Liu and Liu, 2003] would need to
be calculated based on particle velocities,
smoothing lengths and physical stiffness.
From this CFL calculation, we would have
an upper bound on the time step ∆t. This
is not needed when using the RKF method,
where there is a clear error estimate every
step.

9.7 Analysis of SPH snow

In this section we will analyze the perfor-
mance and the correctness of the SPH snow

model. Snow will only be affected by a con-
stant and homogeneous wind field to focus
on the SPH alone.

9.7.1 Friction angle

Friction angle is also known as an-
gle of repose. We know from
[Cresseri and Jommi, 2005] that snow
with a density of 300kg/m3 should have a
friction angle of 63 degrees.

Hypothesis When snow is dropped in a
pile, its sides will have an angle of 63◦.

Test 512.000 particles, each with a mass
of 1.95 grams (total mass 1 ton) were created
with a rest density of 300 kg/m3 and and ini-
tial shape of a cube resting on the ground
plane. Gravity was turned on over a period
of 5 seconds and the particles were allowed
to sink together and spread out. The floor
was made to act like a no-slip boundary.

The slow onset of gravity is to avoid an
impact-like effect when the gravity force
suddenly went from 0 m/s2 to 9.82m/s2. A
sharp onset of gravity tended to make the
snow pile flatten more than when gravity
slowly came on. Considering that friction
angle has nothing to do with the shape of
the pile when dropped from a height, but
rather with the relationship between inter-
particle friction versus shear stress from par-
ticles pushing in between each other due to
gravity, it seems to be correct to use the gen-
tle gravity.

When the floor was not a no-slip boundary,
the pile also flattened more than else. This
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is due to the fact that only the rigidity of
the snow itself was keeping it from shear-
ing. With a no-slip boundary, that bound-
ary aided in resisting shear stresses, which
is what would be seen in the real world on
any surface with a non zero friction quotient.
The show can then get a ”foothold” on the
ground.

The simulation was stopped when the par-
ticles came to a rest after approximately 5
seconds and the friction angle was measured
on a screenshot from an an angle parallel to
the ground and from a point one half snow-
pile-height from the ground.

Result The resulting pile and superim-
posed friction angle is seen in Figure 60.
It is unclear how exactly the friction an-
gle should be measured, considering that the
slope is not a straight line. Therefore it was
done by manually drawing a line which co-
incided reasonably with the side of the pile
and then measuring that line. The result of
55◦ was considered a reasonable value, con-
sidering the high degree of uncertainty for
the viscosity.

Changing the yield stress for the snow, we
were able to make more rigid snow as seen
in Figure 61. What that figure shows is also
how arbitrary friction angle measurements
can be, given that, in that example, it can
range from over 80 degrees to 50 degrees.
The reason the top is so rounded is due to
an initial collapse of the sides. The sides
are only ”supported” from one side and are
therefore more likely to fall down and out-
wards under shear stress.

60 degrees.png

Figure 60: Pile of snow showing close to the
expected 55◦ friction angle

other degrees.png

Figure 61: Pile of snow with higher friction
angle due to a higher viscosity. The particles
are rendered small to better visually separate
them.
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9.7.2 Rigidity of compressed snow

It is the assumption that the higher the den-
sity of the snow, the higher the rigidity. The
literature does not state a concrete relation-
ship factor between friction angle and den-
sity, though it does relate Young’s elastic
modulus and shear modulus to density and
this to some extent can be related to fric-
tion angle. The test of rigidity was there-
fore somewhat loose and its primary pur-
pose was to see that the density dependent
rheological behavior was giving more solid
snow, when compressed, and that the adap-
tive rest density was in fact working so that
the snow would not explode outwards after
having been compressed.

Hypothesis Snow will increase in density
when compressed, and using adaptive rest
density, this will not result in a permanent
state of stress. The compressed snow will be
more rigid after compression.

Test Again 512.000 particles were gener-
ated with an initial rest density of 300kg/m3

and a particle mass of 1.95 grams. That is
approximately one ton of snow. The initial
domain, in which the particles were created,
was 3.33m3. Then the domain was reduced
in volume to 1.25m3 which resulted in the
density increasing to 800kg/m3, which is al-
most the density of ice. The domain bound-
aries were then expanded to several meters
in either direction of the ice block - keeping
the floor boundary constant.

Result The rest density of the particles
was measured after initial compression, and,

Figure 62: A very compact block of snow
particles now forms an ice cube with a den-
sity of 800kg/m3

with some very small variance due to ir-
regular packing of the particles, it was
800kg/m3. The result is seen in Figure
62. As expected, the new rest density of
the particles meant that there was no stress
inside the cube, and therefore no outward
force made the cube explode, as would have
been the case if the original rest density of
300kg/m3 had been maintained. The cube
was now keeping its shape and remained a
cube.

9.7.3 Young’s modulus sanity check

We will consider a layer of snow with a
depth of L = 1m and a density of ρ =
60kg/m3 as newly fallen snow. On the snow,
we put a person wearing a pair of snow
shoes. The person has a mass of m = 80kg
and the gravitational acceleration is g =
9.82m/s2. The combined area of the snow
shoes is A = 2(0.76m · 0.25m) = 0.38m2.
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The shoe area is based on mountaineering
shoes and information from Wikipedia stat-
ing

”Sizes are often given in inches, even though
snowshoes are nowhere near perfectly rect-
angular. Mountaineering shoes can be at
least 30 inches (76 cm) long by 10 inches
(25 cm) wide.”

We now observe how deep the person sinks.
This is done by using the small strain tensor
and assuming constant density during com-
pression.

We rewrite the strain tensor to isolate the
new length l from the initial length L

ε =
l−L

L
l = εL+L (121)

(122)

Hypothesis Based on very basic personal
snow experience, we expect the person to
sink some 0.2m into the snow.

Results The calculations are as follows

E(ρ) = 187300e0.0149ρ = 457928Pa

σ =
−g ·m

A
=−2067Pa

ε =
σ

E
=−0.0045

l = εL+L = 0.995m
(123)

That was not as expected. The person sank
5mm into the snow. Snowshoes may be
good, but not that good.

This unfortunately shows us that our expres-
sion for Young’s modulus is not accurate. It
is not entirely unexpected since the measure-
ments of the modulus have been based on
settled snow - albeit at different densities -
while we are using it on loose snow here.

In the interest of curiosity, we could reverse
the calculations and see what Young’s mod-
ulus should have been, if we should see the
20cm depression. We note that 20cm of
100cm is not really a small strain any longer,
so we use the Green strain tensor instead.

l = L−0.2m = 0.8m

εG =
l2−L2

L2 =−0.36

σ =
−g ·m

A
=−2067Pa

E =
σ

ε
= 5742Pa (124)

That value of Young’s modulus is some
1.25% of the value we have been using. The
reason it has not made everything else en-
tirely wrong, is that wind blown snow is gen-
erally not very stressed. It just blows around
feeling nice and loose.

It is surprising, though, that Young’s mod-
ulus seems to be so far off, while the yield
shear stress, derived much the same way, is
so accurate. We have no obvious explana-
tion for this yet.
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Sanity check (p74) revisited

Person standing on 1m deep snow.
Snow density is ρ = 80kg/m3.
Person mass 80kg (including backpack).
Shoe area A = 0.38m2.
How deep will she sink?

TAG
Text Box
The following seven pages are from the thesis defence. At that point I had realized why the "sanity check" of Youngs modulus failed. Please read this to get the previously missing explanation.
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Sanity rechecked 2

Using a slightly higher density ρ = 80kg/m3 than in paper
ρ = 60kg/m3.

E(ρ) = 187300e0.149ρ =616903Pa

σ =
−gm

A
=− 2067Pa

ε =
σ

E
=− 0.00335

l = εL + L =0.997m (10)
(11)

We expected some 0.20m compression and got nothing near
that.
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Sanity check - stress during compression
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Sanity check - what is missing

For brittle materials, the failure strain is commonly a
constant, and for snow it is approximately ε = 0.002
for all densities of snow.

At what compression can the resulting normal yield stress carry
the person?
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Sanity check - stress during compression WITH failure

Now assuming constant strain and total failure.

E =
σ

ε

E =
−2067
−0.002

= 1033500Pa

E(ρ) = 187300e0.0149ρ = 1033500Pa

ρ = 129kg/m3 (12)

sink = 1m −
(

1m
80kg/m3

129kg/m3

)
= 0.379m (13)
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Sanity check - stress during compression WITH failure
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Sanity check - stress during compression WITH
failure, Zoom
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9.7.4 SPH Time step size

The size of the time step for the
SPH implementation was in the range
0.0005s≤ ∆t ≤ 0.7s.

The higher step sizes were when no snow
had yet landed on the ground. At this time,
the particle interaction was very low. The
lower step sizes were when some snow was
fixed at the ground and other snow fell into
it at speed. Due to the high friction quotient
and high relative velocity, this was to be ex-
pected.

When looking at the individual particles’ er-
ror estimates ε , just before shrinking the
time step, as defined in section 9.6, we note
that only a few of the particles have too large
errors, while the large majority is well be-
low the threshold which can be seen in a his-
togram plot of ε .

9.7.5 SPH steps per second

The stepping speed of the SPH was found
to scale almost linearly with the number of
particles as seen in table 3.
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Num particles Step time Step time per particle Steps per second
512,000 6 ms 12 µs 167
1024,000 15 ms 14 µs 67
2048,000 39 ms 19 µs 26

Table 3: Time summary of SPH model
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Part II

Wind simulation

10 Computational Fluid
Dynamics

This section will give a quick introduction to
general Newtonian fluid dynamics, with fo-
cus on the basics and the general parts. Later
in section 12 it will be made more concrete.

10.1 Fluid flow

A fluid is commonly defined as a mate-
rial which cannot resist shear stress. It is
clearly seen in, for example, water which is
highly resistant to normal stress, in that it
can only be compressed with great difficulty,
but which flows easily when sheared - slided
against itself. The only shear strain resis-
tance comes from the fluids viscosity, which
is for fluids such as water or air, very low.

A general model for the behavior of fluids
is the Navier Stokes equations for fluid flow
which relate terms such as external forces,
viscosity, pressure gradient and flow veloc-
ity.

The general Navier Stokes equations for

compressible fluid, which is derived in
[Liu and Liu, 2003] among many other
places, is written as

ρ

(
∂u
∂ t

+u ·∇u
)
= ...

−∇p+µ∇
2u+

(
1
3

µ +µ
υ

)
∇(∇ ·u)+ f

(125)

The third right hand side term
(1

3 µ +µυ)∇(∇ ·υ) is describing how
much the fluid resists compression depend-
ing on the bulk viscosity µυ . We note that
if there is no compression/decompression,
then the divergence ∇ ·u will be zero which
makes the entire term vanish. This leaves
us with the Navier Stokes equation for
incompressible fluid and the additional
constraint of zero divergence.

While no physical substance is truly incom-
pressible, and atmospheric air, which we
will be modeling, is most certainly not, the
incompressibility assumption is commonly
used. As a rule of thumb, fluids flows with a
Mach number Ma below 0.3, can reasonably
well be considered incompressible.

Ma =
u
c

(126)

The fluid velocity is u and the speed of sound
c in a fluid is described by

c =

√
µυ

ρ
(127)
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which relates directly to the speed of sound
in a solid as seen in section 6.10, jot now
using the bulk viscosity in place of Young’s
modulus.

Given that the Mach number is defined as
velocity relative to the speed of sound in the
fluid, and that this speed of sound is de-
fined from the bulk viscosity, we see how
Mach numbers serves as an indicator of the
influence of the compression term. If the
flow is close to the speed of sound, the fluid
may build up locally and increase its den-
sity. Fluid can flow into a region faster than
the pressure forces can push it away again,
since pressure moves at the speed of sound...
or rather sound moves at the speed of pres-
sure waves.

The speed of sound in atmospheric air at
−10◦C is 325.16m/s meaning that for veloc-
ities below 0.3(325.16m/s) = 97.5m/s we
can consider the incompressible case. Even
a hurricane has wind speeds below this, so
in our case, incompressibility is a valid as-
sumption.

We rewrite the equation to give rate of
change of velocity for incompressible fluid.

∂u
∂ t

=
1
ρ

µ∇
2u− 1

ρ
∇p− (u ·∇)u+

1
ρ

f

∇ ·u = 0 (128)

Here the first equation defines the time
derivative of the flow velocity u in terms of
viscosity, advection, pressure and external
forces. The second equation is the incom-
pressibility constraint stating that the diver-
gence of the flow should be zero. The divi-

sion by density represents the inertia of the
fluid, relating mass density to force density.

Note in this that f is not force, ordinarily
written F and measured in Newton, but force
density which is

f =
F
V

=
N
m3 (129)

10.1.1 Advection

The general advection expression is

u · (∇φ) (130)

where the quantity φ is advected by a veloc-
ity field u. u ·∇ is sometimes referred to as
the advection operator.

Advection of a quantity in a fluid is the trans-
port of that quantity, due to the movement of
the fluid.

If we look at the components in the advec-
tion operator working on φ , we see that it
is just the dot product of the velocity vec-
tor and the gradient, spatial derivative, of
φ . There is another word for that, which is
directional derivative. The operator simply
calculated the derivative of the quantity in
the direction upstream, and scaled this by the
magnitude of the velocity vector. Knowing
if the value of φ is higher or lower upstream,
lets us know what is coming. If the quan-
tity increases upstream, then it will increase
downstream over time, and if the flow veloc-
ity is high, this increase will come rapidly.

While the directional derivative view is easy
to understand, it may sometimes be confus-
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ing that u · (∇u), as it is seen in fluid dynam-
ics, is in fact the advection of the flow ve-
locity itself, by that same flow, but again, if
the wind speed is higher upwind, then that
higher wind speed will come to us, with the
wind, and the wind speed locally will in-
crease.

10.1.2 Pressure

The pressure term

− 1
ρ

∇p (131)

states that there is an accelerating force from
higher pressure towards lower pressure. The
actual acceleration a is the force density
f =−∇p divided by the density of the fluid
a = − 1

ρ
∇p. Given that the expression does

not deal with macroscopic fluid volumes, the
force is applied over an infinitely small sur-
face on an infinitely small volume.

10.1.3 Viscosity

The viscosity term

1
ρ

µ∇
2u (132)

describes the fluids resistance to internal
movement.

If some parts of the fluid travel fast and
some travel slow, the faster will speed up the
slow, and the slow will slow down the faster.
The rate at which this occurs depends on the

scale of the relative movement as well as the
viscosity which is the thickness of the fluid.

The Laplacian of the velocity field ∇2u is
the divergence of the gradient of the veloc-
ities. A positive value then means that the
velocity gradients point away, diverge. If
the velocity gradients points away, then the
surrounding velocity values must generally
be larger. This in turn means that they will
speed up the local velocity through sliding
friction, e.g. viscous forces.

10.1.4 Fractional step method

One possible way of solving the equations is
to evaluate each part on the right hand side
of the time derivative ∂u

∂ t of the velocity field,
and them simply add them together.

This is the method known as the fractional
step method. The problem with this method
is that it disregards the constraint that the
flow should be divergence free ∇ ·u = 0.

We therefore first find the new velocity field
from its time derivative using some form of
numerical integrations such as section 12.6
and then we fix the field to be divergence
free.

10.1.5 Divergence free flow

Given a divergence full velocity field w, we
seek to find the divergence free field u. This
can be done using the Helmholtz Hodge
decomposition of the field. This is based
on Helmholtz’s theorem, which is used as is.
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Theorem 1. Any sufficiently smooth and
rapidly decaying vector field in three dimen-
sions can be separated into the sum of an ir-
rotational vector field and a divergence vec-
tor field.

This lets us write the current divergent field
w as a sum of an unknown divergent free
field u and an unknown scalar field which
we call ∇p.

w = u+∇p (133)

∇ ·w = ∇ ·u+∇
2 p (134)

∇ ·w = ∇
2 p (135)

Initially in (133) we write the values as de-
scribed. Then we take the divergence on
both sides in (134). Finally in (135) we use
the fact that the field u is defined to be diver-
gence free, meaning ∇ ·u = 0, which lets us
remove it from the equation.

The final version is a Poisson equation
which we will describe how to solve in sec-
tion 12.7. Solving it will give us the un-
known p.

The reason ∇p is used as symbol for the irro-
tional field is that in our case it is actually the
gradient of the pressure field. The essence of
the decomposition is that we find the pres-
sure field which will exactly make the ve-
locity field divergence free by returning to
the initial version in (133) and rearranging
to get an expression for the divergence free
field.

w = u+∇p (136)
u = w−∇p (137)

This concludes the general introduction to
fluid dynamics. In section 12 we will use
this to model an actual fluid flow.

10.2 Turbulence

A fluid flow is generally laminar, transi-
tional or turbulent. A common rule of thumb
[Squires, 2008] is that Reynolds numbers
Re below 2100 are laminar while numbers
above 4000 are turbulent. The numbers in
between are transitional with laminar and
turbulent parts. In Figure 63 we see both
laminar, transitional and turbulent flows.

Re =
uL
ν

(138)

where u is the mean fluid velocity relative
to walls or obstacles, L is the characteristic
length and ν is the kinematic viscosity. The
characteristic length is somewhat vaguely
defined in the literature, but it is commonly
seen as the largest dimension of an object
disturbing the fluid flow or the internal di-
ameter of a pipe in which the fluid flows.

The Reynolds number describes the ratio of
inertia to viscosity in the fluid. If the vis-
cous dampening is much higher than the in-
ertia, the higher frequency components of
the flow, e.g. the turbulence, will tend to
be dampened. A turbulent flow is character-
ized by a high degree of variation over time
and locally very high pressure and velocity
gradients, which means that the velocity dif-
fuses more quickly than for laminar flow.

Given that turbulent flow has much large
variation in space and time, accurate mod-
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eling of turbulence requires a very fine spa-
tial and temporal resolution. This can be
problematic for numerical solutions. From
[Squires, 2008] we have a relation between
Re and the required number of grid points.
It is proportional to the Reynolds number in
the 9

4
′
th power.

η =

(
ν3

ε

)1/4

NxNyNz ≈ (
L
η
)3

∝ Re9/4 (139)

where η is the Kolomogorov length scale, ν

is the kinematic viscosity and ε is the rate of
energy dissipation.[Squires, 2008].

A similar calculation can be made for the
temporal resolution, but we will not dive
into the finer details of turbulence model-
ing here, but only repeat the conclusion from
[Squires, 2008] which is that a very high res-
olution is required if the smallest eddies are
to be calculated directly.

In practical fluid modeling, approximation
methods are used. One of the more general
methods appear to be the Large Eddy Simu-
lation [Sagaut, 1998], LES, which was orig-
inally developed in the 1970’s.

The method works by first smoothing the ve-
locity field to arrive at a field with only the
low frequency components. The finer detail
turbulent motion is then approximated and
added back in to the flow.

The effect is that the method explicitly cal-
culate the scales that it can, and then approx-
imate the scales, that the space and time grid
cannot capture.

Figure 63: Two fluid flows. The leftmost
shows a laminar flow transitioning into a
turbulent flow, while the rightmost shows a
pure laminar flow.[WikimediaCommons]

11 Finite Volume Method

The finite volume method, hereafter FVM,
is used to discretize a continuum in order
to solve a partial differential equation prob-
lem. It does this by partitioning the contin-
uum into a set of sample volumes as seen in
Figure 64. In the folowing, we will describe
the so-called cell centered method.

Each volume, commonly referred to as cell,
is bounded by boundary surfaces which ei-
ther connect to a neighboring volume or
which defines the outer boundary of the do-
main.

By observing the simple fact that change to
the contents of any such volume will be due
to flux over a volume boundary4, we note
that we can describe the development of a
volume by the events taking place on its sur-
faces.

As an example, consider a fluid described by
FVM. Each cell holds part of the fluid. If
fluid moved out of a cell, it does this over

4Here considering only a material which does not
itself change over time. It has a material derivative of
zero.
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a boundary, and by crossing a boundary be-
tween cells, it will at the same time move
into the neighboring cell. If we know the
fluid velocity for every point on the bound-
ary, and we know the size of the bound-
ary, then we implicitly know the amount of
fluid crossing the boundary. Additionally,
we know that we are never loosing any of
the fluid since what leaves one cell will en-
ter another. The exception to this is the outer
boundaries where suitable boundary condi-
tions need to be defined.

11.1 Gauss’s divergence theorem

The Gauss divergence theorem (140) states
that the outward flux of a volume is equal to
the integral of the flux inside the volume.

This is intuitively understood if we consider
exchange between two points inside the vol-
ume. One point receives and another gives.
The sum is zero, and the total give-take in-
side the volume is zero. The only way to
give or take between any two points, in a
way that does not sum to zero inside the vol-
ume, is if this giving or taking is across the
outer boundary. This in turn means that we
can entirely ignore the flux inside the vol-
ume, which sums to zero, and only consider
the flux over the boundary, as the theorem
states.

In (140) the left hand side is the divergence,
or the outflow, of some vector field quan-
tity F in the volume. The right hand side is
the outflow of that quantity over the surface
of the volume. Here F · n is the dot prod-
uct of the vector F and the normal vector of
the surface, which is the same as the part
of F actually crossing over the boundary -

as opposed to moving parallel to the bound-
ary. By integrating the part of F crossing the
boundary moving outwards, over the entire
surface, we have the total quantity leaving
the volume - or the divergence.

∫
V
(∇ ·F)dV =

∫
S

F ·ndS (140)

11.2 Conservation

The FVM is a conservative discretization
method in that it does perfectly account
for the location of any discretized quantity.
Whenever something moves, it does so in
between cells and what leaves one cell will
enter another cell. At the outer boundaries,
we will have boundary conditions which
exactly state how the discretized quantity
flows. This property makes FVM an attrac-
tive method for physical simulations where
the partial differential equations are com-
monly constrained by conservation laws in
order to provide unique solutions.

11.3 Boundaries

The general divergence theorem is valid for
any shape of boundaries, but to make the
surface integral more manageable for com-
putation, the boundaries are defined as a
piecewise continuous function. This way the
integral over an arbitrary surface can be de-
scribed as a sum over its pieces.

∫
S

F ·ndS = ∑
e

∫
Se

F ·ndS (141)
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If, further more, those pieces are simple lin-
ear functions, such as planes in 3D, then the
surface integral can be easily evaluated

∫
S

F ·ndS = ∑
e

Fe ·nAe (142)

where Ae is the area of the the e′th surface
element and n is the normal vector of the el-
ement, which is a constant for a plane. The
Fe is the average value over the entire face,
which is explained in the next section.

11.4 Mean value theorem

The mean value theorem states that on an
interval of any continuous function, or seg-
ment of a function, there will be at least one
point on which the derivative of the func-
tion will be equal to the average derivative
over the entire interval, as seen in (143). In
the interval a to b, there will be a point α

which has exactly the derivative of the aver-
age derivative over the interval.

f ′(α) =
f (b)− f (a)

b−a
(143)

While this theorem may seem rather trivial,
it does show that we can rewrite any function
integral as a single mean value fmean multi-
plied with the length of the segment b− a.
Consider the line integral over x from a to b

∫ b

a
f (x)dx = ( fmean)(b−a)

= ( fmean)c (144)

where c is the length of the segment.

This means that if we know the true mean
value of the function, then integration is triv-
ial. We can then assign that mean value to
the surfaces surrounding a volume, and re-
duce the surface integral to a sum of simple
multiplications between constant mean val-
ues and constant areas. The question is how
we know this mean value.

11.4.1 Mean value by interpolation

In FVM we deal with volumes, and the sur-
faces bounding those volumes. We do know
the integral of some quantity inside those
volumes, but we do not know the exact dis-
tribution of the quantity.

Relying on the mean value theorem, we
know that some point inside the volume will
accurately represent the exact mean value.

Given that we do not know where that point
is, or what it’s value is, we have to make an
educated guess. It seems reasonable to as-
sume that the center of a volume may com-
monly give an appropriate representation of
the mean value.

For this reason, we assign the volume cen-
ter the value of the mean value. By assign-
ing the mean value to the center point inside
the volume, we can now interpolate between
those known values, with known positions,
in order to get approximate values for other
positions as well.

Averaging scheme Following the same ar-
gument as for the volumes, we will say that
a good mean value point for a surface is
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Figure 64: A mesh consisting of four cells.
The mean value for each cell is assumed to
be located at the cell center, and is indicated
as a red dot. The blue lines represent inter-
polation between pairs of center mean val-
ues and the midpoint of this interpolation is
represented by a green dot

the center of that surface. This is how we
can now estimate the surface values, by in-
terpolation, or averaging. This is seen in
Figure 64, where we have mean values in-
dicated in red, lines of interpolation indi-
cated in blue and interpolated values indi-
cated in green. The dark green values do not
arise from interpolation, but are instead pre-
defined boundary values.

In Figure 64 the mesh is particularly simple
in that the cells are equally sized squares.
This is in no way a requirement of the
method, which supports arbitrary meshes.
Given such a simple mesh, the mean value
of any interior surface s separating the vol-
umes A and B can be described through a
simple average of the two volume values.

smean =
Amean +Bmean

2
(145)

Upwind scheme There an other note wor-
thy way of estimating a value at the cell
faces, when the value is transported by a
flow field through the cells. It is known as
the upwind scheme. We will not be using
it in this work, but it is mentioned for com-
pleteness. As for the averaging method just
mentioned, smean is the estimated quantity
at the face, knowing the quantity in the two
connected cells.

smean =

{
Amean ;ue ·ne ≥ 0
Bmean ;ue ·ne < 0

(146)

The ne is the normal at the face pointing
from cell A to cell B, and this time we also
consider a flow field with velocity vector ue
at the face. It is this flow which transports
the quantity through the cells.

Note that if the flow is moving primarily
from A to B, we estimate that the quantity
at A is also the quantity present at the face,
given that it is constantly being moved from
A to and through the face.

For more complex shapes such as Figure
65 the interpolation is much more compli-
cated, regardless of the method used. In
that example the line connecting the two
center points does no longer intersect the
center of the separating edge. Now other
forms of averaging between known cen-
ter points may be used, but we will not
consider this problem here, but refer to
[Versteeg and Malalasekra, 2007].

Staggered grid An alternative to the so-
called ”cell centered grid”, as we have just

85



Part II - Wind simulation 11. Finite Volume Method

Figure 65: A two cell mesh consists of
unequal triangles and the interpolation be-
tween center values no longer intersect the
midpoint of the separating edge.

explained, is a staggered grid. Here, not all
quantities are defined at cell centers and cal-
culated at faces. Instead some are actually
defined at the cell faces, or at the vertices
joining cells. Commonly velocities are de-
fined outside the cells that way.

While it does avoid some interpolation, and
while it in some ways increase the effective
resolution of the grid used in calculations of
gradients and solve some potential problems
known as checker boarding, we have chosen
to not implement this method in this version
of the simulator.

This was done to keep the expected com-
plexity of coding low, though it would
likely be worth revisiting that solution
in a second iteration. For details on
staggered grids in FVM we refer to
[Versteeg and Malalasekra, 2007].

11.5 Boundary values

The previous boundary description deals
with internal boundaries between cells in the
mesh. The external boundaries are differ-
ent in that their value, or their derivative, is
given explicitly and not obtained through in-
terpolation.

Where the boundary value φab between cells
A and B, sharing face f would otherwise be
found through interpolation

φab =
1
2
(φA +φB)

it is now given explicitly for a Dirichlet
boundary as φab = value and implicitly in
differential form for Neumann boundaries as

∂φab

∂ fn
= value (147)

11.6 Derivatives

Derivatives of the quantities described in the
cells can commonly be found by consider-
ing cell center distances and cell center dif-
ferences. While methods such Finite Differ-
ence deal exclusively with derivatives along
the coordinate system axis, x,y,z, FVM is
different in that derivatives are defined over
boundaries instead. Knowing those deriva-
tives lets us calculate the flux over a face. In
other words, we do not deal with

∂φ

∂x,y,z
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for some quantity φ . Instead we consider the
face derivative

∂φ

∂ fn

for the face f with normal vector n. This
can be evaluated for the cells A and B over
the face f with the normal vector n away
from cell A, where the cell center distance
is |B−A|

∂φ

∂ fn
=

φB−φA

|B−A|
(148)

This is the directional derivative over the
face from A towards B. In that expression
for face derivative, we have assumed that the
mesh is well behaved in that the face normal
is parallel to the vector between the two cell
centers, or more formally

fn ·
B−A
|B−A|

≈ 1 (149)

where now A and B represents the coordi-
nates of the cell centers.

11.7 Matrix formulation

Given the simple volume based description
of field values as described, we can now eas-
ily write matrix equations representing val-
ues in a FVM mesh. We will show how
to calculate the face velocities from cell ve-
locities, the cell divergence from face val-
ues and the face gradient from cell values.

Note that this is all we need in fluid com-
putation given that the Laplacian is just the
divergence of the gradient and we have ex-
pressions for both divergence and gradient.

One can define the normal vector for cell A
as pointing out from A and the normal vec-
tor for cell B as pointing out from B, but
this gives some ambiguity at their common
face and to avoid having to write expressions
for the different vector valued quantities at
the faces as seen from both A and B, where
the value is identical, with only the sign re-
versed, we define the normals at a face as
along the positive coordinate axis.

This means that the normal vector at the face
ab, from Figure 64, is [1,0] and not [-1,0],
and the normal at bd is [0,1] and not [0,-1].
This is important to keep in mind in the fol-
lowing.

We will now write the matrix expressions for
some arbitrary quantity φ .

Face values Using the notation shown in
Figure 66, and the fact that any boundary
surface mean value, is the average of the two
mean values, in the volumes, separated by
the boundary, we can write the surface val-
ues as

1
2


1 1 0 0
0 1 0 1
0 0 1 1
1 0 1 0




φA
φB
φC
φD

=


φab
φbd
φdc
φca

 (150)

where capital letters φA denote cell center
values and φab is the face center values.
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Figure 66: The same mesh of four cells, as
in 64, is now labeled at points of interest.
The volume centers are labeled with black
capital letters, the internal boundaries with
brown letters detailing the relevant volumes
the boundary separates. The outer bound-
aries are show with blue letters.

Gradient We now write the matrix ver-
sion of gradients, at the faces using the
value D to represent the cell center distances
which in our simple uniform mesh is a con-
stant.

1
D


−1 1 0 0
0 1 0 −1
0 0 −1 1
1 0 −1 0




φA
φB
φC
φD

=


∇φab
∇φbd
∇φdc
∇φca


(151)

Divergence The divergence (the outflux)
of every volume element can be written
equally ”compact”.

The flux over a boundary is driven by some
flow field. It may be a fluid flow velocity
with arbitrary direction, or it could be heat

diffusion along the gradient of the heat. In
the following we use u as flow velocity.

We split the flow velocity into its two com-
ponents x,y since the example mesh is two
dimensional. Remember that the normal
vector of a surface is pointing along the pos-
itive coordinate axis. It further means that
the y component of the flow u at the face
ab is irrelevant in the divergence calculation
since ab is always using a normal with zero
y component.

The same is true for all other vertical bound-
aries and for horizontal boundaries the same
can be said about the x component. For this
reason, the vector values at the boundaries
are only represented by either their x or their
y component. In the following, A is the area
of a boundary between two cells.

In this example it is a constant, but in more
complex meshes, it may vary between sur-
faces.

Terms such as φabux
ab means the value of φ at

the face ab multiplied with the flow field u’s
x-component at the face ab. Note the trans-
pose of the matrix in the following.
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A



1 −1 0 0
0 −1 1 0
0 0 −1 1
−1 0 0 1
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 0
0 0 0 −1
0 0 0 −1
−1 0 0 0



T 

φabux
ab

φbduy
bd

φdcux
dc

φcauy
ca

φb1uy
b1

φb2uy
b2

φb3ux
b3

φb4ux
b4

φb5uy
b5

φb6uy
b6

φb7ux
b7

φb8ux
b8



=


∇ ·φA
∇ ·φB
∇ ·φC
∇ ·φD



(152)

Given the expression for divergence, con-
straints, such as the zero divergence from
incompressible fluid dynamics section 10,
can be written compactly and solved using
a multitude of matrix solvers. If we rewrite
the divergence as

Au = 0 (153)

where A is the large stencil matrix and u is
the face flux vector.

It quickly becomes obvious, especially look-
ing at the large matrix in the divergence
expression, that FVM can compactly5 be
written in matrix form which makes com-
puter implementation of the model some-
what easy.

At the same time it is seen that the matrix
form gives rise to some very large and very

5It is the notation which is compact - not the ma-
trices.

sparse matrices, if the number of FVM cells
is high.

This is however not a serious problem, if
one has access to numerical libraries suited
to quickly deal with large sparse matrices,
such as CUSPARSE [Nvidia, 2011], which
we are using.

12 FVM model of wind for
snow simulation

Having covered the basics of fluid simula-
tion in section 10 and the Finite Volume
Method FVM in section 11, we will now
look at how it can be used to computation-
ally model a wind field. This is done by dis-
cretization of the Navier Stokes equations,
hereafter NS, for incompressible fluid flow,
using the finite volume method. This prob-
lem is then solved using the fractional step
method seen in section 10.

12.1 Mesh

While all the previous FVM explanations
will work equally well on rectangular
meshes or meshes with different cell shape,
they do assume that the cells are regular in
the sense that the connecting lines from cell
center to cell center passes through the face
centers.

We have chosen to use a uniform resolution
cubic cell mesh where every cell is a cube
1m in every dimension. This is not an opti-
mal mesh in any sense of the word, but it was
somewhat simpler to implement in this first
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version of the simulator. We considered us-
ing tools such as DistMesh for Matlab to cre-
ate fine meshes which could conform to ar-
bitrary geometry, but due to time constraints,
this was dropped.

All simulations are made inside a cubic do-
main 256m in each dimension, which was
also to keep the implementation initially
simple. Those choices means that mesh res-
olution is wasted on higher areas - where
there will certainly be no snow drifts - and
that the mesh cannot be refined near ob-
stacles, where a higher resolution could be
usable. The 1m cell size is not extremely
coarse though, and in [Mott et al., 2010] for
example, a resolution of 0.8m is used.

12.2 Fractional step

For every cell, we have a three dimensional
velocity u and a scalar pressure p. We seek
to model the development of u over time
and apply a pressure term which makes the
fluid divergence free. We solve this using
the fractional step method as in section 10.

From section 10 we have the Navier Stokes
equations, which are repeated here fore con-
venience.

∂u
∂ t

=

advection︷ ︸︸ ︷
−u ·∇u+

di f f usion︷ ︸︸ ︷
1
ρ

µ∇
2u−

pressure︷ ︸︸ ︷
1
ρ

∇p +

f orces︷︸︸︷
1
ρ

f

∇ ·u = 0 (154)

When solving the NS numerically, using the
fractional step method, we have to evaluate

the contribution of each of the terms, advec-
tion, diffusion and pressure. We will not be
using any external forces. In the following,
the symbol f will instead represent a face.
We will also not be transporting any thing
in the fluid other than the velocity field it-
self. Had we not been using the SPH model
for the snow, the snow would have been ad-
vected and diffused along with the velocity
field.

12.3 Advection

The advection flux of the velocity field over
a face is dependent on the face’s area fa, the
velocity at the face fu and the outward fac-
ing normal vector fn of the face. The total
advection over all faces f is then

advection≈∑
f

ue(ue · fn) fa (155)

12.4 Diffusion

The diffusion flux of the velocity field over
an face is again dependent on the face’s area
fa, the gradient of the velocity over the face
∇ fu and the viscosity µ . The total diffusion
of velocity over the face is then

di f f usion≈∑
f

µ∇ fu fa (156)

Note how the diffusion is defined in term
of the Laplacian ∇2, or the divergence of
the gradient ∇ · ∇u of the diffused quan-
tity, here velocity, but in FVM divergence
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is found by summing flux over boundaries
which reduces ∇2 to a sum of gradients over
the boundaries.

The gradients themselves can be found as
described in section 11.7.

12.5 Pressure

A pressure difference over an face will ac-
celerate the velocity inside the two con-
nected cells, parallel to the normal vec-
tor. The acceleration will be away from the
higher pressure towards lower pressure.

The acceleration is given by the pressure
force divided with the mass of the cell,
which is the fraction before the pressure gra-
dient.

To find the pressure contribution to the
velocity change, we need the directional
derivative of the pressure over the face.

This can be found in FVM as explained in
section 11.6. We then have the total pressure
force over the face.

pressure≈∑
f

fa∇ fp (157)

with fa being the area of the face.

12.6 Time integration

Knowing the time derivative of velocity ∂u
∂u

we can advance from u(t) to u(t +∆t) using
any one of a multitude of numerical integra-
tion methods.

We will be using the midpoint method, also
known as RK2. It is an explicit method
which is second order accurate. It is a very
simple method to describe and implement,
but it is not terribly stable. The time steps
should be chosen to at least abide by the
CFL condition and generally one ensures
that the step size is only a fraction β of this
upper limit. The upper bound for the time
step can then be written as

0 < β ≤ 1

∆tmax ≤ β
∆x

umax
(158)

where ∆x is the cell size.

This condition ensures that physical ”sig-
nal”, e.g. material moving umax∆t

step , will not
travel faster than the numerical speed which
is ∆x

step . Had we been dealing with a com-
pressible fluid, we would have had to con-
sider the velocity of pressure waves mov-
ing at the speed of sound, which would have
made the time step constraints even more se-
vere.

For our purpose it is usable though since we
will not be relying on a wind field with a
high temporal resolution.

Given a unknown function y(t), its ini-
tial value y(t = 0) and its time derivative
y′(t) = f (y(t), t), we seek to integrate y′ ∆t
forward in time to find y(t +∆t). The mid-
point method does this by evaluating the
current time derivative, advancing half a
step forward in time using this derivative6,

6This is just an explicit Euler integration step
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reevaluate the derivative at this midpoint po-
sition and then take the full step using this
reevaluated derivative. More formally it is

yn =y(t)
yn+1 =y(t +∆t)

yn+1 =yn +∆t f
(

yn +
∆t
2

f (t,yn), t +
∆t
2

)
(159)

where yn and yn+1 are introduced as short-
hand for y at current and next time step.

We seek to find the new velocity using
the midpoint method. The time-derivative
f (y, t) is in our case not time dependent, e.g.
it does not depend on time - only on the cur-
rent state of the system at any one time y(t).
It can therefore be written as y′(t) = f (y).
The midpoint method is then simply

f (t) =
∂u
∂ t

un+1 =un +∆t f
(

un +
∆t
2

f (un)

)
(160)

12.7 Solve for divergence free
flow

Advancing the velocity field forward in
time, as describe, will in all likelihood not
result in a divergence free velocity field.
To enforce this constraint, we will employ
the Helmholtz Hodge decomposition, as de-
scribed in section 10. This will give us a
scalar pressure field and a divergence free
velocity field.

If we call the newly calculated, likely diver-
gent, velocity field w and the desired diver-
gence free velocity field u, we have

u = w− ∆t
ρ

∇p (161)

where the divergence of the pressure field is
an unknown found from

∇
2 p = ∇ ·w (162)

which is a Poisson equation on the form
∇2φ = f . This equation can be solved us-
ing various solvers for linear systems. For
simplicity, and as a first version, we use the
Jacobi method [Heath, 2002].

The problem can be transformed into a set
of linear equations using the matrix form, as
described in section 11. The Laplacian op-
erator can thus be written as a large matrix
called L, and the pressure can be written as
a vector p, n elements long, where n is the
number of cells in the mesh. Multiplying the
Laplacian operator matrix with the pressure
vector gives the Laplacian vector of the pres-
sure Lp = ∇2 p. This is shown in Figure 67.

It should be noted that the only non-zero el-
ements in a matrix row, are the ones related
to the Laplacian of a cell. Given that ev-
ery cell is a cube with six faces shared with
other cells, only six neighbors contribute to
the divergence of the pressure gradient (the
Laplacian of the pressure) for each cell. This
means that n− 6 positions in a matrix row
is empty and that the Laplacian matrix has
n2−6n zero elements. It is in other words a
very sparse matrix.
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Figure 67: A matrix can be defined which
when multiplied with a pressure vector will
result in a vector of Laplacians ∇2. It is seen
that each value in the result vector depend
only of one dot product of the pressure vec-
tor and one matrix row.

This system could now be solved directly as

Lp = ∇u

p = L−1u (163)

but given very large matrices, this will be
very slow and it will take up a lot of space
since generally the inverse of L will not be a
sparse matrix, even though L is.

The Jacobi method solves matrix sys-
tems as above. It solves problems on the
form Ax = b for the unknown x and the
known A and b, through iterative relaxation.
The A matrix should be square, which is al-
ways the case for a system with n equations
for n unknowns, and A should be diago-
nal dominant, which means that the diagonal
values should be larger than all other values
in a matrix column or row.

The requirement of diagonally dominance is
not a problem for our L matrix, since the di-
agonal values will be 6 while the non-zero
off diagonal values will be 1.

This is a result of how the gradients for a cell
are found from difference between cell cen-
ter values, and how divergence of gradients
is sum of face gradients. This is because the
cell itself (the one we want the gradients for)
will be present in six such gradient calcula-
tions and sums, for one divergence of gradi-
ents calculation, while the neighbors will be
present only once each.

To continue with the Jacobi method, solv-
ing Ax = b for x, the matrix A is partitioned
into a diagonal D and an off-diagonal R part
which are defined as follows, using the Iden-
tity matrix I

A = D+R
D = AI
R = A−D (164)

The unknown x value is initialized to some
guess which may or may not be close to the
actual x. The correct solution can be found
using fewer iterations if the initial x is close
to the correct value. This means than the
previous value, in our case the pressure field,
can be a good starting point for the next
Helmholtz Hodge decomposition and pro-
jection.

While the inverse of the large sparse matrix,
here A, is not easy to get, the same is not
true for the diagonal matrix D where each
value, in the inverse, is just the reciprocal of
the non-inverted values.
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D−1
i j =

1
Di j

(165)

The next value of x xk+1, given D, R, b and
the previous value xk is found as

xk+1 = D−1(b−Rxk) (166)

This is repeated until the residual r = Ax−b
is below some threshold, or until an upper
limit for the iterations is reached.

If the iterations are stopped before the resid-
ual becomes zero, then the resulting velocity
field will not be perfectly divergence free. It
is generally not a large problem since each
new field will not be increasingly divergent.

While we could have written GPGPU code
to directly handle the above matrix compu-
tations, we have opted not to. The prob-
lem is not very interesting, since it is only a
very large number of multiplications, addi-
tions and subtractions. Instead we have used
CUSPARSE which is a matrix/vector opera-
tions library from Nvidia.

It lets us perform fast computations of very
large sparse matrices on the GPU. De-
tails about this library can be found in
[Nvidia, 2011]. It should be noted that
there exist another GPGPU library, CUSP,
with implemented solvers, which are better
than our implementation, but we only real-
ized that after having implemented our own
solver.

12.8 Update frequency

For a fluid simulator, which should show the
dynamic properties of a fluid in meticulous
details, the flow should be updated as often
as possibly. In our case, we will instead up-
date the flow quite slowly. We need to de-
scribe how the air moves around obstacles,
but we can very well live with a time aver-
aged wind field which develops slowly. The
wind just needs to be update when the geom-
etry (obstacles or snow drifts) change, and
this does not happen quickly. Other works
[Feldman and O’Brien, 2002] describes this
same prioritizing where the wind field is up-
dated at a much lower frequency than the
other elements in the domain.

This is essentially a steady state simulation
which slowly adjusts to the domain changes.

Initially we let the wind field develop,
based on boundary conditions. When the
field is fully developed, which the literature
[Versteeg and Malalasekra, 2007] says is ex-
pected after the fluid has moved ten times
the length of the domain, we will start the
actual simulation by adding snow. We ob-
served this development time to be shorter
in general, but it can be defined as

t =
L
u

(167)

where t is the time for the field to develop, L
is the distance traveled through the domain
and u is the mean fluid velocity.

After development, we slow the wind up-
date frequency to one update every 5s simu-
lation time. This lets the wind react to snow
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buildup, but otherwise pretend that the field
is constant.

12.9 Boundary values

The simulation domain requires various
boundary values for the six sides. We need
an inflow where the wind enters and we need
a solid boundary at the ground which pre-
vents wind from passing and which resists
tangential fluid movement. Additionally we
need open boundaries at the remaining sides.
Here wind may enter or leave as it desires.

12.9.1 Inflow

The common way to model incoming air,
which is supposed to have already traveled
over the ground for a while, is a logarithmic
high dependent velocity [MIT, 2006]. This
is sometimes called ”law of the wall”.

u =
u∗
κ

ln
y
y0

(168)

where u is the mean flow velocity at height
y above the ground and y0 is the roughness
length, which is the height below which the
flow velocity becomes zero. This length
over a snow surface is commonly set to
0.01m [Mott et al., 2010]. The constant κ

is the Von Karman constant, which is set to
0.41.

Given this expression, we can define the face
normal velocity component for the faces on
the inflow boundary.

12.9.2 Open boundaries

The domain is limited in size to 256m in ei-
ther direction, but while the domain is not
endless, it has to be modeled that there can
be inflow and outflow through the bound-
aries, since we are modeling an open block
of atmosphere and not a closed box filled
with air. In fluid dynamics an open boundary
can be modeled using a Neumann boundary
condition

∂ p
∂ fn

= 0 (169)

where we state that the pressure gradient
over the faces on the open boundary are
zero. This means that if fluid wants to flow
out through the boundary, there will be no
pressure buildup which opposes this. Also,
if fluid wants to move away from the bound-
ary, into the simulated volume, no negative
pressure at the boundary will resist this.

There is also no viscous shearing stress ex-
perienced by fluid moving tangential to the
boundary. This is a slip boundary where it is
implicitly assumed that fluid in the bound-
ary faces moves exactly as fluid inside the
boundary does. We do not use interpolation
in this case, but assign the boundary face
fluid velocity bu the value of the fluid veloc-
ity Cu of the cell C connected to the bound-
ary b face.

bu =Cu (170)
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12.9.3 No-slip boundary

A no slip boundary satisfies the ”law of the
wall” (168) where the velocity near the ob-
stacle approaches zero. Again, we dispense
with the interpolation method for finding
face velocities, and simply assign the face
a velocity value. For the no-slip boundary at
the ground this velocity is zero. The no-slip
boundary used in later test of driven cavity
flow in section 12.10.1 is assigned a non-
zero velocity to emulate the sliding bound-
ary driving the flow.

bu = velocity (171)

12.9.4 Porous boundaries

The final boundary, which is in fact an in-
ternal boundary between cells, is a porous
boundary. It is used to emulate a snow fence
which essentially is a wall with, commonly
horizontal, slits allowing some air to pass
through.

According to [Tabler, 1991], the optimal
porosity is 40% to 50%. We feel that a rea-
sonable way of modeling this is with an or-
dinary open face between cells, but with an
”area” for flux computations which is only
half its true value. This means that the flux
of any quantity over the face will be half
what it would otherwise be, which is the
same result as if we had partitioned a bound-
ary into a number of blocking faces inter-
mixed with a number of open faces.

There is one difference between a true
porous boundary and an open face with half

the area, and that is the turbulence on the lee-
way, and to a certain extent windward, side
of the boundary. A solid face, with a number
of large holes in it, will have a very turbu-
lent wind field due to the wind shear arising
from some air moving through the holes and
sliding against other air which hides in the
wind shade behind solid parts of the wall.
According to [Tabler, 1991] this turbulence
is a large contributing factor to the effective-
ness of snow fences, and it is one of the rea-
sons the fences are not solid.

Given that we do not model turbulence ex-
plicitly, and given that we will certainly not
be using a mesh fine enough to directly
model the holes in the fence, this is an ef-
fect we cannot hope to catch in the current
implementation.

Therefore we use

0≤ ω ≤ 1
fA = ω fA (172)

for face f with area fA and porosity factor ω ,
where a porosity of 0 means it is solid and a
factor of 1 means it is just an open boundary.

12.10 Analysis of FVM wind

We will now evaluate the behavior of the
fluid simulator used for the wind simulation.
This will in part be done by comparison with
reference results from the literature, and in
part by comparing with results from our own
simulations using the multiphysics simulator
Comsol www.comsol.dk.
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Our implementation is not able to render the
fluid flow on its own, so the velocity field
was written to a file and then imported into
Matlab. Here it was converted into usable
form for a stream line rendering, which is
what is shown in the figures in this section.

12.10.1 Shear-Driven Cavity flow

One of the standard benchmarks in CFD
is the shear-driven cavity flow problem.
The problem considers incompressible flow
in a square domain with a sliding upper
lid. As a point of reference, we use
[Erturk et al., 2004] which investigates the
shear-driven, or lid driven, cavity flow in de-
tail.

We will be using a Reynolds num-
ber of 1000, which is represented in
[Erturk et al., 2004] and shown in Figure 68.
A test scene scene was created for testing the
driven cavity flow. The fluid domain was
defined to be a 2D7 box 10 meters long in
each dimension. The top boundary was a
no slip boundary moving to the right, while
the three other boundaries were stationary
no slip boundaries.

Kinematic viscosity υ for air at 0◦C is
1.3310−5m2/s and the characteristic length
is, in this case, approximately 10m. This
gives a lid velocity of 0.0013 m/s.

Re =
vL
υ

(173)

7Actually 3D, but only one cell deep and with slip
boundaries on the front and back walls

Figure 68: A 2D Shear-Driven Cavity from
from [Erturk et al., 2004]. The ”lid” is mov-
ing to the right of the plot. Note the large
vortex which is almost centered and the two
smaller vortices in the lower corners, and
that the rightmost lower vortex is the larger
of the two.
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Figure 69: A driven cavity flow in a 10m
by 10m 2D box using a grid resolution of
1m. This flow shows only one vortex near
the top.

We test the scene with two different mesh
resolutions. One on a 10x10 grid as seen in
Figure 69, which makes each cell one cu-
bic meter, and the other at 40x40 as seen in
Figure 70, which makes each cell 1/64 of a
cubic meter.

In Figure 69 we see that the flow is too
smooth and that only the principal vortex is
seen, and it is much too close to the top.
This is what could have been expected for
lower Reynolds numbers if the fluid had
been much thicker. Obviously the grid reso-
lution is much too small to capture the true
behavior.

In Figure 70 we have a flow which resem-
bles the reference in Figure 68 quite well as
can be seen in the overlay in Figure 71. The
two flows are quite similar, though not iden-

Figure 70: Same driven cavity as before but
this time with a 0.25m grid resolution. This
time the principal vortex is almost at the cen-
ter, and there are two smaller vortices in the
bottom corners, with the rightmost vortex
being larger.
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Figure 71: The reference flow
[Erturk et al., 2004] is shown in red
over our result, using the fine grid, in black.
The two flows are quite similar, though not
identical.

tical. The reference grid size was 1/600 the
size of the cavity in both dimensions, while
our grid was 1/40 in both dimensions. Due
to implementation specific problems, we did
not test with a finer grid, but considering the
difference in resolution, the results are quite
promising.

It should be noted that the size of the cavity
was chosen to match the size of obstacles in
the scene. In a full scene, we could not ex-
pect to use a finer grid resolution than 1m in
each dimension, since it would be too com-
putationally costly. Given that constraint,
there would be little point in improving the
test resolution far beyond that. This means
that the result from Figure 69 is to be con-
sidered the result we would see in an actual

simulation for cavities, spaces between ob-
stacles, of average size. The finer result from
Figure 70, on the other hand, shows us that
the fluid simulation is working properly and
that its inaccuracies are just a result of a to
coarse grid.

12.10.2 Wind field around cube

A 2D scene was created which was 20m
high and 80m wide. 10m from the left
side was an obstacle 5m in each dimension.
The wind came from the left at a velocity
of 10m/s. This is a turbulent flow with a
high Reynolds number as explained in sec-
tion 10.2.

The reference used for comparison was this
time a simulation using the multiphysics
program Comsol www.comsol.dk. The data
from that simulation was exported and ren-
dered by Matlab, as was the data from our
own simulation. This was done to make eas-
ier comparisons.

If we look at the comparison in Figure 72
we see that again our fluid flow is much too
smooth compared to the reference. We have
in the previous test with driven cavity shown
that the fluid solver can be made accurate
with a higher grid resolution and do not re-
peat this test here. The issues with out im-
plementation, as before, prevent us from in-
creasing the resolution from the default 1m
in each dimension, since this test scene is
somewhat larger than the one used in the
cavity flow.

Though the flow lacks the turbulent look,
it still gives us a small area in front of the
obstacle with very low flow velocity, and
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Figure 72: Streamlines around building seen
from the side. The top plot is the result from
our simulation using a grid 1m in each di-
mension. The bottom plot is from Comsol
using a grid 0.5m meter in each dimension
and also using a kε turbulence model with
default settings.

a larger area behind the obstacle with an
equally low flow velocity. This means that
while the flow does not circle around on the
leeway side and return, the flow does slow
down enough for snow deposition to occur.

12.10.3 Wind field around snow fence

In Figure 73 we see the streamlines near
a snow fence, which are remarkable more
willing to move towards the ground behind
the obstacle, than what we saw for the solid
building. This is most likely a direct result of
the flux across the snow fence faces not be-
ing zero. The air velocity directly behind the
fence is much lower than above the fence,
but it is not quite as low as behind a solid
cube as seen in Figure 72. The turbulence
behind the fence is not seen, but that was
also not expected, as explained in section
12.9.4.

Figure 73: A 3 meter high 50% blocking
snow fence was simulated and the velocity
field vectors of the wind, was exported and
rendered with Matlab.
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Part III

Coupled model

13 Coupled snow and wind

While the snow particles are obviously
strongly affected by the wind while in sus-
pension and saltation, they are more resis-
tant to the wind once they have become sta-
tionary. Stationary snow, such as a snow
drift, strongly influences the flow of air since
it obviously block and divert air. According
to [Mott et al., 2010] this effect is quite sig-
nificant.

We have previously, in section 4, described
how the wind is experiencing drag from
saltating particles near the surface. This is
an element which we have not included in
the final implementation, due to time con-
straints.

13.1 Wind speed pseudo parti-
cles

In our finite volume model, a cell centered
one, velocity vectors are defined at the mid-
point of the cells. If extra artificial SPH par-
ticles are placed at the cell center, they can
directly be given a pseudo velocity equal to
the velocity vector of the face. The velocity
of the particle is termed ”pseudo” because
the particles will never actually move, and
they will never interact with other pseudo
particles, and only interact with real parti-
cles through their pseudo velocity. They will
remain fixed at the same position in the mesh

throughout the simulation. The real benefit
is that the velocity can be taken seamlessly
from a FVM description to a SPH descrip-
tion and the SPH model can work with the
FVM velocities as if they were originally
SPH velocities.

We have chosen a smoothing length h of the
virtual particles which is slightly larger than
the diagonal radius of the cells.

h =
cellSize
sin45◦

(174)

This ensures that a particle moving from one
cell to the next, through the corner, will not
jump from the influence of one wind particle
to the next. When the smoothing length is at
least slightly larger than the diagonal radius
of the cells, the particle will not leave the
influence of the first particle before entering
the influence of the second. This smooth-
ing is essentially the reason that we do not
directly use the FVM cell center flow veloc-
ities, seeing that this would give a discontin-
uous wind drag effect, and if smoothing was
required anyway, SPH smoothing seems rea-
sonable, and easy to implement. We have,
however, not tested if this non smoothed
drag would truly cause problems, or if the
problem is hypothetical.

In this wind influence, the smoothing length
of the real particles is of no consequence.
Only that of the wind particles is relevant.
As explained in section 9.5, every SPH par-
ticle will look for interactions in its own cell
and the 26 surrounding cells. This means
that it will already be looking for particles
in the cells containing the wind particles,
which means that if it only recognizes wind
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Figure 74: Every volume in the FVM mesh
has a special wind speed SPH particle which
”radiates” a wind velocity field outwards to
neighboring SPH particles. Note how, in 2D,
every position on the inside of the ”grid” will
be in the neighborhood or at least two parti-
cles. This will have the effect of smoothly
interpolating the wind velocities throughout
the domain.

Figure 75: Empty scene with the artificial
wind particles plotted as red. Only every
10th particle in each direction is rendered.

particles for what they are, it can ignore
its own smoothing length and find the wind
contribution from the pseudo particles.

13.1.1 Snow-controlled wind velocity

When a snow drift exist, it affects the wind
field by preventing the wind from blowing
through the drift. The surface of the drift
forms a new boundary with a zero velocity
on the inside of the drift and a no-slip bound-
ary on the outside. This could be handled by
dynamically altering the mesh, so it forms a
boundary against the snow drift.

Rather than altering the mesh, whenever
snow moves in the drift, we will use the
same pseudo particles as before. This time
the snow will affect the velocity stored in the
particles. This influence will depend on the
local snow density around the pseudo parti-
cles.

upseudo =

{
1+cos(

ρpseudoπ

100kg/m3 )

2 uFV M , ρ < 100kg/m3

0 , otherwise
(175)

The cosine function is used to ensure a
smooth function. Here upseudo is the pseudo
particles velocity and uFV M is the FVM cell
velocity, which will be scaled towards zero
as density approaches 100kg/m3.

Accumulated snow will not let the wind pass
through it. When the initial terrain is a rough
one, then the accumulation of snow will
smooth the terrain so it in previously rough
areas will become quite smooth. In other ar-
eas it may have been primarily smooth be-
fore and now it can have a large snow drift
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Figure 76: The scaling function relating
FVM velocity to pseudo SPH particle veloc-
ity depending on local snow density

deflecting the wind. It is therefore quite im-
portant to consider how accumulated snow
and the wind field interacts.

We do not consider the situation when a
snow drift actually move as a whole, which
theoretically could happen if a drift suddenly
slides down a slope or collapses for some
reason. In that case it would be incorrect
to model the snow-air boundary as having
zero velocity just because the snow density
is high there.

13.2 Analysis of coupled model

In this section we will investigate how the
coupled snow and wind model behaves un-
der various test conditions.

13.2.1 Dune shape

The behavior of snow drifts and sand
dunes are governed by the same forces
[Andreotti et al., 2002, MIT, 2006,
Zhang and Huang, 2008]. The detailed
difference lines in the friction angle of the
material being blown by the wind and in
the susceptibility of the particles to wind
shearing forces, which in turn depends on
the particle mass and shape.

We can therefore not directly compare a
sand dune under certain wind speeds to a
snow drift under the same wind speeds, and
expect a perfect match. We can however
look at the general shape of the dunes and
drifts, and evaluate the snow drifts based on
that comparison.

From [Andreotti et al., 2002] we have a de-
tailed description of dune formation and
some illustrations useful for comparison.

Dunes and drifts have a gentle slope towards
the wind, a sharp ridge and a steep side away
from the wind. The cause of this is the fact
that particles will easily blow up over the
slope on the wind side and then drop into the
leeway side where it will not be disturbed by
the wind. Not only does the wind not blow
the particles away from the drift, it actually
swirls around and returns blowing the parti-
cles closer into the drift or dune.

This is illustrated in Figure 77 and a photo-
graph of this shape is seen in Figure 78. For
snow, this can in some cases result in a ridge
which is not only sharp, it actually forms
an overhang like a breaking wave. This is
possible when wind speed is constant over a
longer period, the snow is very light and the
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Figure 77: Wind blows particles up the lead-
ing edge of the drift and then swirls around
over the top. This results in a steeper leeway
side with particles in effect being blown into
the drift against the general wind direction.

Figure 78: A sand dune shows a gentle
slope towards the wind, a sharp ridge and a
steep side away from the wind. Figure from
[Andreotti et al., 2002]

temperature is not so low that the snow can’t
bind together and form tight bonds.

This is not something we have been able
to see in our simulations. Probably mainly
because we model even the rigid phase of
snow as a low viscosity fluid as described in
section 7, and because we do not have the
swirling flow of the wind.

Ridged shape of snow drift When we let
wind in the coupled model affect a symmet-
ric pile of snow, the expected effect is seen.

Figure 79: Snow drift with wind from the
left side. The wind speed is low to medium
and the leeward side is quite shallow and the
top of the drift is very smooth.

In Figure 79 the wind comes from the left
and it somewhat low with a velocity of 5
m/s. In Figure 80 the wind is from the left
and this time the wind speed is 15 m/s. It is
seen that the sharpness of the drift depends
on wind speed which is to be expected.

The faster the wind, the more saltation, and
the farther the particles move before com-
ing to rest again. It is however unclear what
causes the somewhat linear segments on the
leeway side of the drift in Figure 80. Some-
times this is observed and sometimes it is
not. It does not seem to be dependent on
grid size or drift location.

Horned shape of snow drift Apart from
the ridge of the snow and the difference in
slope of the drifts sides, we expect it to show
a curved shape with the curve pointing to-
wards the wind. This is seen in Figure 81
as well as in Figure 78. The shape is caused
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Figure 80: Snow drift with wind from the
left side. The wind speed is medium to high
and the leeward side is quite steep

by the higher wind speeds along the sides
of the drift. Here the wind picks up parti-
cles and carry them behind and back into the
drift, just as seen in Figure 77. Only, this
time the motion is in the horizontal plane.

We saw this shape in out simulations. A
symmetric pile of snow would blow into a
ridged shape, showing a horizontal curve
with the horns of the curve away from the
wind. There was one slight problem though.

As the wind kept blowing, the shape tended
to become more and more elongated. In
Figure 82 we see a curved shape after 100
minutes of simulation with a wind speed of
10 m/s, while Figure 83 shows the same
after 200 minutes. The shapes generally
tended to be quite stretched. It appears to be
the result of a too coarse wind field which
does not adequately capture the turbulent
swivel of snow at the leeway side of the
drift. This theory is supported by tests with
larger and smaller grid resolutions, where
the drifts tended to be less stretched when
the resolution was increased. Another sup-
porting observation is that the inner side of
the curved drift was very smooth compared
to the inside in Figure 81. At the reference
image from [Andreotti et al., 2002] the same

Figure 81: A dune shows a curved shape
away from the wind as the sides of the dune
is affected more by wind shearing than the
inner portions are. [Andreotti et al., 2002]

smoothness is not seen. Instead it has a more
noisy turbulent look.

Snow drift near building In Figure 84 we
see a snow drift building near a building.
The drift shows the relevant characteristics
such as small drift on the windward side and
a larger drift on the leeway side. Looking at
the streamlines, it is not surprising that snow
is deposited where it is, but we note that the
slope on the leeway side is not entirely as ex-
pected. The drift does not show the expected
shallow slope. Instead the snow forms a
large clump of snow behind the building,
and as time goes on, more snow than ex-
pected [Tabler, 1991] will form on the lee-
way side. This is due the the problem of the
missing loop back of the streamlines as ev-
ident in Figure 72. This lack of a definite
end to the wind means that the low velocity
field behind the building is very much larger
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Figure 82: A snow drift curving away from
the wind.

Figure 83: A snow drift curving away from
the wind.

Figure 84: A scene was simulated with a
single 5m high building. A 2D slice of
the velocity field was exported and rendered
in Matlab. The snow density was also ex-
ported and rendered as an overlay in Mat-
lab for densities above 300 kg/m3. The
building and the snow was then hand col-
ored to show their individual locations. The
”lumpy” look of the snow was due to some-
what large particles. Note how some stream-
lines pass slightly through the snow, due to
the smoothing nature of the wind particles.

than it should be and snow will willingly de-
posit in this protective bubble of low veloc-
ity wind.

Movement of snow drift Finally we con-
sidered the motion of the drift, as a whole,
with constant wind. We expected the drift to
travel downwind and we expected the snow
particles to leap frog over each other and
take turns being at the wind side of the drift,
blowing over the top and sides and being on
the leeward side.

This was seen to some extent, but the
problem with an elongated drift, as previ-
ously described, meant that while the drift
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did move, it also stretched out a little too
much. The result was that the drift stretched
out approximately 1 meter for every me-
ter its center of mass moved. According
to [Andreotti et al., 2002] this is not the ex-
pected behavior. When the curved, ridged
drift is formed by a certain wind speed, it
should not continue to change shape, but
only move with the wind.

We attempted this snow drift movement
at different mesh resolutions and different
wind speeds. As expected, the higher wind
speeds resulted in more elongated drifts, and
the finer mesh reduced the artificial stretch-
ing of the drift. We were, however, unable to
refine the mesh below cells of 0.53m since
the application had no support for different
mesh resolutions in the same scene. This
means that while we could observe a differ-
ence in error between mesh resolutions, we
could not eliminate it, or even reduce it to
the point where it was insignificant.

Conclusion The conclusion of the above
is that we did model realistic shape of a snow
drift, and that this was done by considering
how the wind affects the snow and how the
snow affects the wind.

At the same time, we seem to need a higher
resolution of the FVM mesh - or we need to
model turbulence.

It is not exactly clear why this is not a prob-
lem for the vertical plane turbulence, but it
seems reasonable that it has to do with the
force of gravity which pulls particles down
behind the drift - turbulence or no turbu-
lence, while the same is not true for motion
in the horizontal plane.

Other wind driven snow simulations such
as [Feldman and O’Brien, 2002] do not in-
clude turbulence modeling, and still do not
report on the artifacts we see. It is our
assumption that this is due to shorter time
spans being observed, since their work is
only concerned with modeling drifting long
enough for them to form and generate inter-
esting graphics. It is only a guess though.

In support of our assumption, that turbu-
lence modeling is the missing element, we
refer to [Moeslund et al., 2005], as well as
our own test in section 12.10, where param-
eter studies clearly show that larger cells in
the wind simulation results in a smoother
wind field.

13.2.2 Effect of snow fences

From [Tabler, 1991] we have some reference
material detailing the shape and size of a
snow drift around a snow fence as seen in
Figure 85.

We simulate a 50% blocking snow fence and
observe the deposited snow in Figure 86.
The immediate observation is that the dif-
ference in the flow, where the flux over the
snow fence boundary is not zero, helps the
results. The general shape is quite similar to
the reference.

One thing, that we are still missing, is the
expected dip in snow height just behind the
fence. It is unclear what the cause of this
is in the real world, but we speculate that
it could have to do with the turbulent zone
just behind the fence. A higher than normal
shear velocity, and resulting erosion, could
be expected here. Given that we do not
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Figure 85: A reference model of a 40% or
50% blocking snow fence and the resulting
snow drift [Tabler, 1991]

Figure 86: A 50% blocking snow fence was
simulated and the density of the deposited
snow, as well as the velocity field vectors of
the wind, was exported and rendered with
Matlab. Then it was hand colored to show
snow and fence.

model this turbulence, we feel that this is a
likely explanation.
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Part IV

Software
implementation

14 Implementation

Initially we considered making a sequential
implementation on CPU and a parallel ver-
sion on GPU. At first, work was done devel-
oping both. It quickly turned out that an op-
timal CPU implementation would be quite
different from an optimal GPU implementa-
tion, and that it was quite time consuming to
both.

Additionally, if the motive for making this
dual implementation was to later make per-
formance comparisons, we would end up
comparing different algorithms with dif-
ferent optimizations on different platforms,
which could still show a difference, but not
in a fair way, considering that we from the
start had a stronger emphasis on implement-
ing for GPU.

Another reason for implementing a CPU
version, could be easier testing of the un-
derstanding, and correctness, of the physi-
cal systems and discretization models, be-
fore porting it the GPU, where development
is generally somewhat harder. It quickly
turned out that the CUDA implementation
came quite easy. The largest problems
tended to be with the general application
framework, which was designed to let us
switch between the serial and the parallel
simulators at runtime.

Therefore we dropped the serial version en-
tirely and focused on the CUDA implemen-
tation.

The test application was implemented
using a variation of C#, C++ and CUDA
C. A graphical user interface was imple-
mented in C#. This GUI called two different
.net classlibraries. One implemented a man-
aged C++ class which could render the scene
through OpenGL, and another implemented
a managed C++ class which in turn called
unmanaged CUDA C code to deal with the
actual calculations. This somewhat round-
about design was used in order to let the
GUI development be as easy as possible us-
ing C# while still separating the general SPH
and FVM models into a reusable classli-
brary. Initially the implementation proved
a little troublesome, but after the first boiler
plate development, the differentiated design
proved to be quite easy to extend as the
project went on.

14.1 Scene setup

There were plans for a simple and intuitive
way of defining the scene through configu-
ration files, but in the end this was dropped.
The consequence of this was that whenever
a new simulation should be performed, the
setup should be hard-coded in the applica-
tion, which was quite time consuming and
prone to error. It also forced us to make
somewhat simple scene designs with few ob-
stacles, though the simulator should not have
had any trouble with a vastly more complex
scene with several arbitrarily spaced obsta-
cles.

109



Part IV - Software implementation 14. Implementation

14.2 Visualization

The visualization was in no way the priority,
and this means that SPH snow particles were
rendered as simple square point sprites.

The ground plane was rendered as a green
surface which was divided into smaller
squares, for easier analysis, with white lines.
The four corners of the rectangular domain
were rendered as yellow lines.

In order to render the particles, the actual
particle data was being copied from the main
graphics card (Nvidia GeForce GTX580),
where the CUDA computation took place,
to a much slower Nvidia GeForce 8400GS.
This copying took the path around system
memory and not the more direct device-
device path, as has recently been possibly
with CUDA 4.0. This data copying was a
bottleneck, but only for the rendering itself,
since the rendering could be interleaved with
the calculations without adversely affecting
simulation performance.

To show the wind behavior, which was not
rendered at all in the test application, we ex-
ported data from the FVM cells to a file,
which was then read into Matlab for post
processing and rendering.

14.3 CUDA results and paral-
lelism

We refer the reader to section A for a brief
CUDA optimization introduction if the sub-
ject is foreign.

Most of the tasks in this simulator are highly
parallel. We partition the work into groups

and consider how parallel each is. Following
this, we analyze the parallelism and data ac-
cess patterns of a specific portion of the SPH
code with a focus on neighbor retrieval.

Primary tasks

• Cell grid update - every particle will in
parallel write itself to its cell and then
a parallel radix sort sorted the particles.
The parallelism is 1 for the cell writes,
disregarding potential atomic conflicts,
and very close to 1 for the radix sort.

• Particle integration over time - every
particle locates its neighbors, handles
boundaries, and calculates forces be-
fore integrating using RKF. The paral-
lelism is 1.

• Update wind field - CUSPARSE was
used for the matrix solutions and it
is unclear exactly what level of paral-
lelism was reached. We estimate it to
be at least 0.9.

• Visualization - the particles were read
back from the GPU and then rendered
by copying them to another graphics
card. This has a parallelism of 0.

considering that we were rendering one
frame 60 times each second and that we took
66 physics steps each second8, and that ren-
dering was interleaved with calculation, the
conclusion is that this application has a par-
allelism very close to 1. This in turn indi-
cates that it is of a type which greatly ben-
efits from a massively parallel implementa-
tion as explained in section A.2.1.

8In the case with one million particles
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CUDA profiling results The results are
obtained using NVidia Visual Profiler and
NSight. The updateDensityByDirectSum-
mationKernel kernel is the main focus of
profiling in this section since it the first place
the neighbor location takes place.

In its current form, the kernel uses 37 reg-
isters per thread and it is launched using a
block size of 256. The grid size is then the
number of particles divided by 256.

In the tables, time is the kernel time it takes
to locate all particles neighbors and calcu-
late density using a SPH kernel. Divergent
branches is per particle in order to compare
over the different particle numbers. IPC is
instructions executed per clock and serial-
ization is the percentage of memory access
which had to be serialized.

The conclusion, when observing the two ta-
bles, is that is does make a huge difference
if the particles are sorted - and more so for
large particle counts. The cache hit ratio was
close to double up when the particles were
sorted, and if the same sorting method had
been used on the cells themselves, and not
just on the particles, then the effect would
likely have been even greater. Not only did
the spatial coherence of particles in a block
ensure that they accessed the same memory,
it also helped ensure that the particles went
along the same path through the code and
had the same number of neighbors in the
same cells. This is seen by the fewer di-
vergent branches in the SFC version of the
code. The resulting number of instructions
per clock is therefore also higher for SFC
and the serialization is lower.

If we consider the last table showing the
row by row sorted particles for one particle

count, it is clear that not only should parti-
cles be sorted - they should be sorted in a
way that preserves spatial locality. While
row by row sorting does yield significantly
better results than no sorting, it is not as ef-
fective as SFC.

Occupancy The occupancy is a sensitive
subject right now. Each thread uses 37 reg-
isters as the code is written now. This means
that only 32768 registers / 37 registers per
thread = 885 threads can be running concur-
rently. Using a block size of 256 threads,
this is 3 blocks out of the maximum of 8.
Currently 885 threads out of 1536 are run-
ning which gives an occupancy of 57%. In
order to hide the memory latency, it would
have been better with more threads. Espe-
cially since the code is not very instruction
heavy and therefore cannot hide it by com-
putation.

If we for the moment assume that the code
is of such a nature that 37 registers is fair,
then there is not much we can do about it
as is clearly seen in the image from NSight.
If the register count could be taken down to
18, the occupancy would be fine, and all 48
warps could be running concurrently.

15 Conclusion

We have made a physically sound deriva-
tion of the relevant properties of wind blown
snow. This work was, however, based on a
very fragmented knowledge base, and the re-
sulting properties need adjustment and val-
idation using more detailed measurements,
if they exist at all. In the very first piece
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Not sorted
Particles Time Divergent branches L1 hit IPC Serialization

512k 22ms 0.13 40% 0.11 0.71
1024k 67ms 0.19 41% 0.09 0.80
2048k 225ms 0.29 46% 0.07 0.81

Table 4: Particles stays at their initial memory location and are not moved by sorting.

SFC sorted
Particles Time Divergent branches L1 hit IPC Serialization

512k 6ms 0.13 73% 0.53 0.50
1024k 15ms 0.17 74% 0.48 0.51
2048k 39ms 0.23 73% 0.49 0.57

Table 5: Particles are sorted according to the SFC index of the cell they are inside.

Row by row sorted
Particles Time Divergent branches L1 hit IPC Serialization

2048k 53ms 0.25 67% 0.32 0.63

Table 6: Particles are sorted according to the index of the cell they are in, but that cell index is
calculated first by x, then y and finally z. A 3D scanline path.

Figure 87: Occupancy information from NSight
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of snow literature [Meller, 1975], the author
made it very clear that snow was an ex-
tremely difficult material, which was highly
non linear in every sense of the word. He
pointed out that it depends on a multitude
of properties and assumptions... he was not
kidding.

Through the introduction of material
strength mechanics, rheology and fluid
dynamics, as well as a comprehensive
description of two relevant discretization
methods, we have simulated the behavior
of wind blown snow. A simple coupling
was designed to connect the two different
discretization models, and we observed that
both the isolated snow, the isolated wind
and the coupled model, behaved reasonable,
though not entirely correctly. When the
model diverged from real world observa-
tions, the reasons for this were discussed
and possible solutions were pointed out.

It seems that our solution may be compu-
tationally more expensive than other meth-
ods mentioned in section 3, where both snow
and air is simulated in a Eulerian model, but
the particle based method, that we have pre-
sented, has the benefit that it is able to take
the simulation from initial snow fall, through
drifting to later sliding and melting snow. It
is, in our view, a more complete and general
model.

We do note, however, that other,
much simpler, methods such as
[Feldman and O’Brien, 2002] can make
realistic snow deposition calculations on
a small scale. The basis of that work is
mostly hand tuning and tweaking and not
the physical description of snow, but the
real question is if that is truly a problem.

While snow is a very complex substance,
and it can hardly be said enough, the process
of blowing snow in the wind and letting it
deposit in areas where the shearing force of
the wind is low, is not really that dependent
on the entire material description of snow.

If, on the other hand, we desire a physi-
cally accurate model which can take snow
from initial crystallization in the atmo-
sphere, through wind transportation and de-
position, and then continue to affect the
wind field, and later just sit in the scene
showing creeping collapse and hardening, or
perhaps melting and flowing as water, then
a more general model such as ours should
be used. Snow may build up on slopes,
and eventually slide down in the form of
avalanches. We have not made in-depth in-
vestigations of the later behaviors, but there
is nothing to prevent the model from being
extended to support all such transitions.

The conclusion seems to be that for specific
subsets of snow behavior, there exist reason-
able methods which handle those quite well,
but when more is required, a more complex
model is needed.

We believe we have, in this work, shown
how such a method could be developed, and
we have taken the first small steps towards a
more unified model, than what is commonly
seen.

15.1 Future work

There are a number of factors which should
be taken into account for further develop-
ment.
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15.1.1 Spatial subdivision

While the spatial subdivision by a regular
grid, for neighbor retrieval, is simple to im-
plement, it has some serious problems with
variable density snow. When snow is build-
ing up and being compressed, the number of
neighbors in the 27 relevant cells becomes
too high.

While the simulation does not become un-
stable, it affects the simulation speed ad-
versely. This is in all likelihood a prob-
lem that could be addressed by a more com-
plex spatial subdivision such as some recur-
sive tree structure. Alternatively the prob-
lem could be mitigated by not allowing the
snow to compress. While the incompress-
ible snow is not physically realistic, snow
will generally not, quickly, pack too tightly
under only the influence of the wind and
gravity, unless the snow pack is very deep,
in which case the deeper layers can be com-
pressed.

15.1.2 Fine tuning and validation of ma-
terial properties

Before our snow model can be trusted,
the descriptive properties must be validated
against a much larger, and more consistent,
set of real world measurements.

15.1.3 Individual time steps and particle
size

From our testing we know that not every par-
ticle is alike. Given their vastly different
time-step requirements, it seems clear that

the simulation would benefit from individual
time-steps, as it is generally used in astron-
omy. It also seems evident that given an up-
per bound on the number of particles, vari-
able particle sizes would allow the simula-
tion to use the available particles in a more
optimal way. The larger part of the snow
mass is located deep inside the drifts and
at that location there is no real need for the
high resolution in neither space nor time.

15.1.4 Turbulence modeling

We noted earlier on that the snow behav-
ior was not entirely realistic, and we argued
that the cause was the lack of either direct
or indirect turbulence modeling. This could
be implemented either by refining the FVM
mesh around the drifts and obstacles to a
resolution, which would capture ”enough”
of the turbulent motion, or it could be done
through turbulence models such as LES. In
all likelihood it should be by doing both.

15.1.5 Visualization

If the simulator is to be used as a tool to help
place obstacles optimally in a snow filled
wind field, it needs to be able to visualize
both the wind field and the deposited snow
in a more clear manner. Rendering white
dots, and exporting and rendering in other
applications, is much too slow and cumber-
some a process.
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15.1.6 Scene design

The scenes used in the simulations should
be easy to define through some configura-
tion file, where all relevant properties can be
easily defined without having to change the
actual program code.
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Part V

Appendix

A Parallel programming
on the GPU

In this section we will give a very brief in-
troduction to the primary optimization goals
one should focus on when developing a mas-
sive parallel application using CUDA. It is
in no way aimed at teaching cuda program-
ming. The focus is only to explain some
of the focus points we have been concerned
with in section 9.5 and section 14.3.

Please refer to [NVIDIA, 2011] for a more
detailed CUDA introduction.

We have be using a NVidia GeForce 580
GTX with 1.5 GB of memory. This card
used the new Fermi architecture which
bridges many of the gaps between CPU and
GPU that have previously complicated GPU
coding. Of the more noteworthy we may
mention a general cache system, which pre-
viously required data to be stored in textures,
and recursion through a hardware stack. We
have been utilizing that cache greatly in our
code.

A.1 CUDA memory types

There are three primary types of memory
on a device with different characteristics.
They are shared memory which is located on
the actual multiprocessor, and which is very
fast, global memory which is located off

chip and is somewhat slow and then cache
memory which is essentially a part of shared
memory on chip and is also very fast.

A.2 Optimization on CUDA

We will briefly mention some of the more
important factors to consider when writing
optimized CUDA code. Some of these are
relevant for CPU coding as well.

A.2.1 Parallelization

The power of the GPU is its ability to pro-
cess a very large number of threads at the
same time. For this reason, a problem
should lend itself willingly to parallelization
by threading to be suitable for the GPU. If
a problem is highly serial in nature, then a
GPU implementation will often be slower
than a CPU implementation. The maximal
speedup by parallelizing portions of a pro-
gram is defined by Amdahl’s law

1
1−P+ P

N
(176)

where P is the portion of a program which
can be made parallel and N is the number of
processors used.

If 10% of a program is serial in nature but
90% can be made parallel, then the maximal
speedup by using an infinite number of pro-
cessors is

1
0.1+ 0.9

∞

=
1

0.1
= 10 (177)
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We therefore need to focus on making as
large a portion as possibly parallel if we
want serious improvements.

Luckily many physical problems, certainly
including SPH, are very parallel in nature.
In SPH we can generally calculate all new
properties of any one particle based only on
old properties of itself and the other parti-
cles. It is hard to define exactly what value
P has, but it is not far from 1.

A.2.2 Cache hit-rate

Global memory on the GPU is quite fast
DDR5 ram running at high clock rate, but
in relative terms it is still slow compared to
the on chip memory on each multiproces-
sor. For that reason previous (pre-Fermi)
CUDA code used the local, shared, memory
on chip as a scratchpad memory or as a pro-
gram controlled cache. Data to be operated
on by a thread block was loaded from global
to shared memory, worked on locally and
the result was then written back to global
memory. This was as an alternative to con-
tinuously accessing global memory for each
and every single instruction. This is, if not
the, then at least one of the single most im-
portant optimizations a CUDA programmer
could do. Some problems, such as the com-
mon matrix multiplication example, are eas-
ily written into this form, while other prob-
lems are a little more random in their ac-
cess pattern. For those problems, data could
be stored in a 1D, 2D or 3D texture which
had actual cache support. It was, however,
a read-only cache, so when data was written
back into the texture, the cache was not up-
dated. This could complicate matters a little.

For never (as of writing spring 2011) Fermi
devices, true caching can be enabled for ar-
bitrary data and this can be handled in hard-
ware. In other words, Fermi devices do have
cache as we know it from normal CPU pro-
gramming. The size of the cache can be user
defined from 16kB to 48kB and is per mul-
tiprocessor.

To fully utilize a cache one still has to strive
towards making memory accesses not to
random. A fully random access pattern will
generally miss the cache and a cache miss is
slightly slower than direct access to global
memory. This is therefore a priority for us;
to make related data appear close in memory
and to access that related data close in time
as well.

A.2.3 Device occupancy

A single multiprocessor can handle an inte-
ger number of identical sized thread blocks
which each consist of a number of threads.
The maximal number of threads in each
block vary among devices, but the GTX 580
supports 1024 threads per block. The ac-
tual number of simultaneous threads on a
multiprocessor depends on the complexity
of the thread code. Simple code, with low
register usage, can be run in many concur-
rent threads, while more complex code take
up more resources. To optimize the utiliza-
tion of the multiprocessor, we should find
the block size which packs the most threads
onto the processor. If the thread code com-
plexity is such that 1000 threads can be
loaded concurrently, then we would should
chose a block size N such that NxM=1000,
where M is an integer number of loaded
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blocks. If we choose N=100, then 10 blocks
M can be loaded and we fully occupy the
device. If we choose N=200, then 5 blocks
M can be loaded. If we choose N=150, then
6.66 blocks M should be loaded, but since
M is an integer, we end up loading only 6
blocks resulting in 6 blocks * 150 threads =
900 threads totally. This is 100 threads less
that we multiprocessor could actually han-
dle.

While NxM is bounded by the resources re-
quired per thread and the resources available
on the multiprocessor, we are free to choose
the N which optimizes NxM. To make the
partitioning of particles into equally sized
thread blocks easy, and to have those threads
be similar, we should ensure that threads
destined for the same thread block are lo-
cated in a continuous block of memory.

A.2.4 Warp divergence

When threads in a block are executed, they
are divided into smaller entities called a
warp. A warp on GTX 580 consist of 32
threads. Only one warp at a time is ex-
ecuted on a multiprocessor, meaning that
while many more threads may be loaded on
the processor only 32 are actually processed
at any one time and the processor selects
among the warps the one to execute.

This is done as a SIMD-step, Single Instruc-
tion Multiple Data, which means that the
threads in a warp executes the exact same
operation but on different data.

An example could be ADD(OP1,OP2,RES)
where every thread performs the ADD in-
struction but where the operands OP1 and

OP2 as well as the location of the result RES
are different. This way, in one step, 32 num-
bers are added. For parallel code, this is of-
ten how things should be done.

There is nothing to prevent the programmer
from writing code where some threads in
a warp does one thing, while other threads
does another. This is seen in conditional
branches where not all threads follow the
same path.

When this happens, some threads take one
path while the other threads are paused and
then the roles are reversed and the previ-
ously paused threads take the other path
while the other threads are paused. With two
paths of equal complexity, this will make the
execution take twice as long since both paths
are taken. This is known as warp divergence,
and it is highly undesirably for obvious rea-
sons.

While it is often not possible to entirely
avoid divergence, it should be kept at a min-
imum. For this reason it is important that
threads in the same warp tend to do the same
things. The primary difference among parti-
cles is the number of neighbors. It is there-
fore optimal if all threads in the same warp
have the same number of neighbors.

If a spatial partitioning is used to optimize
neighbor finding, then it would also be best
if the same paths through this structure is
followed.

A.2.5 Summary

To summarize, we wish to have thread
blocks which contain threads that are
”alike”. They should be close in space
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and close in memory. They should have
roughly the same neighbors and preferably
they should have each other as neighbors.
Additionally we desire the thread blocks to
allow full occupancy on the device.

Having ”alike” particles in the thread blocks
will ensure that they access the same data
(other particles) in the same order in mem-
ory which will optimize the cache utiliza-
tion. The particles will also have a simi-
lar number of neighbors and they will travel
along the same paths in spatial portioning
structures.

A method of ensuring that similar particles,
meaning particles close in space, are close in
memory and that they are easily partitioned
into thread blocks is to form a 3D space fill-
ing curve and sort the particles by an index
which depends on how far along the length
of the curve the particle is located. This is
detailed in section 9.5.4

If the particles are sorted properly in mem-
ory, then we can take any continuous block
of particles from memory, with any size, and
be confident that the particles in that block
will be similar. We are therefore free to
choose the optimal block size and to de-
fine the relevant particles for any given block
based on just a start and an end index. This
makes it easy to obtain good occupancy.

Again this is something we can attempt to
obtain by sorting the particles with a space
filing curve. Particle close in space will tend
to have the same number of neighbors and
if a spatial partitioning is used, the parti-
cles will tend to travel along the same paths
through the structure to locate the neighbors.
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