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Abstract

The theories explaining many astronomical observations come from an iterative process of forming a
general theory, designing a model, testing and refining. This project aims to retrace the steps leading to
some of the astronomical theories which are now considered fact.

The focus will not be on state of the art and very complex astronomical models and the maximal
degree of realism. Instead it will be on creating the simplest possible models which still realistically
demonstrate the mechanisms at work at a level of accuracy that would make them relevant for introduc-
tionary astronomy courses.

The SPH method will be used to create models for some astronomical problems. The models will be
described, implemented and tested to provide a comparison between the observations and the models.

This project aims to demonstrate those models and do it in such a way that it can be considered a
dynamic lab experiment where the effect of changing the parameters can be observed live. Motivation

In the astronomical field various very complex SPH models are being put to everyday use forming
new theories, but the focus is naturally not on old previously solved problems. This means that there is a
lack of illustrative physical simulations of those problems.
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1 Notation and symbols

This section serves as a small collection of sym-
bols and units used throughout the text.

P Pressure N/m2

ρ Density kg/m3

δ (α,β ) Kronecker delta function unitless
a acceleration m/s2

v Velocity m/s
m Mass kg
φi Gravity potential at particle i N
c Speed of sound m/s

2 Fluid dynamics

In astronomy the objects being simulated are gen-
erally fluid like objects. That may be gas clouds or
fluid objects such as stars or even galaxies which
behave like inviscid1 fluids [FLU ]. When simulat-
ing more rigid objects such as planets or moons,
the fluid assumption still generally holds for gas
planets and rock planets with a molten core. Un-
der extreme stress, such as during interplanetary
collisions, even solid rock planets will behave like
fluid [Liu and Liu 2003].

For this reason, the behavior of fluid is relevant to
the simulations in this paper and it will be briefly
described.

2.1 Navier-Stokes fluid equations

The Navier-Stokes equations describe how the ve-
locity field of a fluid changes over time based on
the velocity field itself, the resulting pressure and
viscosity as well as external forces. The equa-
tions will not be derived here, but its derivation
in relation to the Smoothed Particle Hydrodynam-
ics method can be found in detail in [Liu and Liu
2003].

1Without internal friction known as viscosity

The equations are based on the conservation of
three physical properties of a fluid. These are con-
servation of mass, momentum and energy.

Conservation of mass For a Lagrangian fluid
(explained in detail in section 3) one deals with
the actual fluid particles which each have constant
mass. This means that we are sure that mas is nei-
ther lost nor gaines, but in general fluid dynamics
this has to be explicitly required as written in (1)
where v is velocity and ρ is density.

Dρ

Dt
=−ρ∇ · v (1)

Conservation of momentum Momentum is
mass times velocity and for a closes system the
momentum should remain constant. This is writ-
ten as (2) where µ is the viscosity quotient which
we will not use (see section 4.1.2), P is pressure,
v is velocity and ρ is density while F is external
forces. The forces will in our case only be gravity.

ρ

(
∂

∂ t
+ v ·∇

)
u =−∇P+µ∇ · (∇v)+F (2)

Conservation of energy The energy is also a
constant in a closed system (3), though it may be
either in the form of macroscopic ordered kinetic
energy or microscopic unordered heat energy.

ρ

(
∂ε

∂ t
+ v ·∇ε

)
−∇ · (K∇T )+P∇ · v = 0 (3)

3 Smoothed Particle Hydro-
dynamics

Smoothed Particle Hydrodynamics, hereafter
SPH, is a so called Lagrangian method as opposed
to an Eulerian method. Where an Eulerian method
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defines the space in which a material moves and
does not track any part of the substance in particu-
lar, but rather keeps track of how much is located
at a particular position in space and what the prop-
erties is of the material currently at that position in
space; a Lagrangian method deals explicitly with a
part of the material and tracks this material through
space.

A good analogy comes from meteorology where
we can either track a property, such as air temper-
ature, in two distinctly different methods. The Eu-
lerian method would be to place weather stations
at fixed positions on the ground and let them track
air temperature. They will then report on the cur-
rent temperature of the air at their specific position.
They will not track any part of the air in particu-
lar. The alternative Lagrangian method would be a
weather balloon which is launched and then move
with the air. It will constantly measure the same
sample of the air and track that air as it moves
through space.

Particle SPH is a Lagrangian method and it
works by partitioning a material into a number of
particles. Each particle is a part of the material
and this subset of the material, or the particle, is
tracked through space over time and this particle
composition is the reason for the term ”particle”
in the name.

Smoothed The term ”smoothed” comes from
the fact that partitioning a material into a number
of point sized particles will both be physically un-
realistic and it will give problems when defining
gradients of various properties inside the material.
The smoothing is also what lets the method define
a dynamic neighborhood relationship among near
particles and this is the equivalent of a mesh in this
otherwise mesh free method.

Hydrodynamics The method is not restricted to
simulating fluids, but it is in this area that it is
most powerful when compared to other methods.

Where most other methods either describe a ma-
terial through a mesh, which is not easily updated,
or describe space in an Eulerian fashion, SPH does
not rely on fixed meshes or spatial partitioning
since it dynamically define an redefine particle in-
terrelations. At first an Eulerian grid based method
may seem to be good enough, and it is in fact used
a lot in fluid dynamics. The method fails how-
ever when the potential space in which a material
may move is very large since even the empty areas
will have to be included in the grid and thereby
cost storage and computational resources. In as-
tronomical simulations there is a lot more empty
space than there is material and for this reason a
Lagrangian method which tracks the actual mate-
rial rather than the space is preferred.

3.1 General idea

Given a particular partial differential equation
PDE which is to be solved for a material the prob-
lem domain, the material (assume a fluid for clarity
for now), is first discretized by partitioning it into a
number of particles which each carry with it part of
the material, that being mass, temperature, veloc-
ity and position. After this partitioning one needs
a method to calculate the field function describing
the material at any point in space. This continuous
field function is used to estimate derivatives of the
field itself at the particle positions. As an exam-
ple consider a pressure force which is the deriva-
tive of the pressure field. Given the field and its
derivatives one can rewrite the PDE into a set of
ordinary differential equations ODE which can be
integrated over time to advance the simulation of
the material.

Smoothing If we have a number of particles
distributed in space and each particle have a tem-
perature T associated with it, then what is the sec-
ond derivative of T ∇2T at the particles location?
This value is needed if we want to figure out how
each particles temperature will change over time.
One particle in itself cannot define this second
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Figure 2: Particles can be defined as discontinous
points in space or theycan be smoothed into a con-
tinous function

derivative, or Laplacian since it will depend on the
neighbors as well.

When looking at the particles isolated, we can con-
sider them as points in space. The field is defined
only at the particles position and is considered zero
elsewhere. This is not a differentiabel function and
this view does not let us calculate derivatives of the
field. When they are instead smoothed as in Figure
2, we obtain a smooth function which is differen-
tiable. The figure is the result of a 1D convolution
of the point values with a Gaussian function.

Smoothing can be viewed conceptually different
ways. Either the particle is actually smeared out
over space as a soft blob and thereby touches
nearby particles and influence them, or we can
view the smoothing as a probability density func-
tion, as in quantum mechanics, where the posi-
tion is not an absolute. Two particles may influ-
ence each other if their probability densities over-
lap somewhere and the higher the probability of
the particles being there, the higher probability of
influence. Averaging this influence will weight it
by the probability and we have the same result
as in the other view. Personally however I pre-
fer to view the smoothing as a weighted averaging
among nearby particles. This view seems to make
more sense when dealing with the derivatives of
the field.

3.2 Integral formulation

The more mathematical basis for SPH is explained
herein.

The integral formulation is based on the identity
(4) where δ (x) is the Dirac delta function which is
1 for x=0 and else 0. The expression (4) simply
states that the value of a function at x is equal to
the integral of this function over the entire domain
x’ multiplied with δ (x−′ x) which is only non zero
at x=x’. In other words, we throw out all values of
the integral except the sample at the exact location
we are interested in. This formulation is identical
to the point based view seen in Figure 2.

f (x) =
∫

Ω

f (x′)δ (x− x′)dx′ (4)

If we now exchange the δ (x− x′) with a more
smooth function W (x−x′,h which has its smooth-
ness defined by the extra parameter h, then we can
rewrite to (5). This expression is however only
an approximation since we are essentially blurring
the image to remove the points. For this reason
smoothed values are said to have O(h2) accuracy.
This error measure is derived in [Liu and Liu 2003]

f (x)≈
∫

Ω

f (x′)W (x− x′,h)dx′ (5)

In SPH W is designated ”smoothing kernel” and
this is the function which is used through out to go
from the discretized point based view to a contin-
uous field. Here h is the smoothing length which
defines the influence area of the particles when de-
scribing the field.

3.3 Field approximation

The particles have an influence radius and their in-
fluence is weighted according to the kernel func-
tion based on their proximity. More concretely
this can be by rewriting the integral to a summa-
tion over all particles as seen in (7) by assuming a
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particle volume of ∆V . Now x j means the position
of the j’th particle.

f (x) =
∫

Ω

f (x′)W (x− x′,h)dx′ (6)

f (x)≈∑
j

f (x j)W (x− x j,h)∆V

The volume can be discretized in terms of mass
m and density ρ since density is equal to mass di-
vided by volume ρ = kg/m3. Both mass and den-
sity are quantities which make sense are generally
needed in a fluid simulation.

f (x)≈∑
j

f (x j)W (x− x j,h)
1
ρ j

(ρ j∆V ) (7)

= ∑
j

f (x j)W (x− x j,h)
m j

ρ j

The function f(x) can now be any quantity which
is known for the particles such as temperature, ve-
locity, pressure or something else, and the above
expression lets us find both the field values and the
derivatives of the field from only a particle defini-
tion.

Number of support particles When a parti-
cle is left without any neighbors inside its support
radius, then the field value at its position will be
equal to the particles own value. This makes sense
since it is an average of one value. It is however
then essentially a point sampling of the field and
at this point a supposedly fluid material is approx-
imated by an infinitely rigid particle moving about
on its own. While atoms may be considered small
and very rigid, the particles in fluid dynamics of-
ten represent larger collections of atoms and those
large collections are not rigid objects. If they were,
they would describe solids and not fluid. This is
therefore a bad approximation therefore the solu-
tion is inaccurate if the number of support particles
is very small. A recommended number of support
particles is 5 for 1D, 21 for 2D and 57 for 3D [Liu

and Liu 2003]. The values may vary slightly from
model to model depending on the level of smooth-
ness desired. More about this in section 7.1.

It is interesting to note that if the number of
support particles should be kept at a fixed value
and the particles are very very tightly packed,
then the smoothing length h should be very very
small. This would mean that the kernel would ap-
proach the delta function at which point there is
no smoothing but rather an accurate point sam-
pling. In other words, if the particle discretization
is reversed by packing the particles so tight that
they start to form a continuum, then the smoothing
method will transform into the initial continuum
method (4) using the Dirac delta operator.

3.4 Derivatives of the field

The spatial derivative of the smoothed function is
obtained simply by replacing W with ∇ ·W . This
is seen from the following rewrite of (5) with ∇·
added to the equation.

∇ · f (x) =
∫

Ω

[∇ · f (x′)]W (x− x′,h)dx′ (8)

Differentiating f(x’) multiplied with W can be
done using the chain rule which gives

[∇ · f (x′)]W (x− x′,h) = (9)
∇ · [ f (x′)W (x− x′,h)]− f (x′) ·∇W (x− x′,h) (10)

Combining (8) and (10) gives

∇ · f (x) =
∫

Ω

∇ · [ f (x′)W (x− x′,h)]dx′− (11)∫
Ω

f (x′) ·∇W (x− x′,h)dx′ (12)

Gauss’ divergence theorem lets the first integral
term be rewritten to a surface integral rather than
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a volume in 3D or an area in 2D as it is now. The
vector n is the normal at the surface boundary.

∇ · f (x) =
∫

S
f (x′)W (x− x′,h)] ·nds− (13)∫
Ω

f (x′) ·∇W (x− x′,h)dx′ (14)

For a kernel with compact support, the W(x-x’)
will be zero from the surface and outwards. This
means that it can be dropped from the expression
since we assume compact support. This lets us
rewrite the expression into its final form (15). As
mentioned in [Liu and Liu 2003] artificial bound-
aries may influence the actual surface in a way
that make the surface integral non zero, but in this
project there are no such things as boundaries since
the entire space is the scene for the simulations.

∇ · f (x) =−
∫

Ω

f (x′) ·∇W (x− x′,h)dx′ (15)

3.5 Kernels

A kernel is a function of a n-dimensional distance
vector r and a smoothing length h. This function
is used to scale the contribution from particles in-
side the support radius of a certain point for a n-
dimensional domain.

For a kernel to give a reasonable smoothing of a
particle sampled field, it has to fulfill some general
requirements, and in some cases it has to be de-
signed to fit a specific purpose as described in the
following. It should be noted that the following
requirements are sometimes violated for specific
purposes if, for some reason, it actually makes
sense, in the problem being described, to have an
uneven smoothing function where particles in one
direction influence the field value more than parti-
cles at other directions.

Normalized The kernel function must be nor-
malized, meaning that it should integrate to 1.

This is an obvious requirement since otherwise
the function being smoothed would lose or gain
in value. If the function was for example a mass
distribution, then a non normalized kernel would
change the mass of the material. To not break the
laws of conservation, the integral must be 1.

∫
Ω

W (x− x′,h)dx′ = 1 (16)

Approach δ for small h The kernel should ap-
proach the Dirac delta function when h approaches
zero. This stands to reason since a h of zero means
there is no smoothing and that we have returned to
the initial discontinuous function from (4).

lim
h→0

W (r,h) = δ (r) (17)

Compactness The kernel should vanish when r
is outside the support radius. Since the support ra-
dius is the radius of the smoothing, no particle out-
side this radius should influence the result. This is
primarily to ensure that computational resources
is not wasted on calculating the minuscule influ-
ence of a far far away particle, but apart from grav-
ity, there generally is no very long range forces
between particles and gravity is not handled by
smoothing kernels as described in section 6.2.

lim
r→h

W (r,h) = 0 (18)

Positive The function should be positive inside
its support. This is a requirement which is based
on physics in that a particle carrying a positive
quantity should never add negatively to the direct
summation over the supporting particles. It would
not make sense for a positive quantity to add neg-
atively.

W (r,h)≥ 0 for ||r|| ≤ h (19)
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Monotonous decreasing as |x − x′| grows
The weighting of nearby particles should be such
that particles close by will count more than parti-
cles far away due to the assumption that any force
working between them will diminish with distance
and not grow. It is also preferred if the derivatives
of the kernel all go towards zero at the boundary
since this will improve numerical stability to not
have a sharp edge at the boundary.

W (r,h)≥W (r+∆r,h) for ∆r ≥ 0 (20)

Even An even kernel function is one for which
(21) always holds. Again this seems reasonable in
that the contribution from two particles on oppo-
site sides from a given position should influence
the point at the position with equal weight. From
a physics perspective, the forces acting on the par-
ticles should be the same, so the direction from
one particle to the other should not influence the
weighting.

W (x− x′,h) =W (x′− x,h) (21)

Smooth A smoothing kernel should be a suffi-
ciently smooth in itself. This is required for nu-
merical stability since numerical integration works
badly with discontinuous forces. An exception to
this rule is the spiky kernel (section 3.5.2) which
is actually discontinuous around 0.

3.5.1 Kernel for density

Often density is smoothed using a function which
looks like a Gaussian. In [Gingold and J. 1977]
they state that the physically most reasonable ker-
nel is a Gausian. A Gaussian distribution is what
is commonly seen in nature and it resembles a nor-
mal distribution of probability density function. A
Gaussian is however not compact since it never be-
comes zero. For this reason the function can either
be truncated at a distance of h or it can be replaced

Figure 3: The poly6 kernel which approximates a
Gaussian inside the support radius which is here 2

by an approximation that looks like the Gaussian
and which is compact.

One such function is known as poly6 which is de-
fines as in (22) and this is the function we have
used in the simulator. The ”problem” for some
with the poly6 is mainly in its derivatives since it is
not infinitely differentiable as the Gaussian is. We
do however not need the derivatives of the density
so it does not in our case.

Wpoly6(r,h)=
315

64πh9

{
(h2−||r||2)3 0≤ ||r|| ≤ h
0 otherwise

(22)

The fraction in the equation is the normaliza-
tion constant which is pre-computed for a given
smoothing length. This means that runtime we
need only calculate the (h2− r2)3 and here it is in-
teresting that r2 is used since the squared distance
between two points is calculated very quickly and
we void taking the more costly square root to find
r

3.5.2 Kernel for pressure forces

While the poly6 kernel is easy to evaluate it has
the same ”problem” as the Gaussian which it emu-
lates. Its first derivative approaches zero when ||r||
approaches zero. This means that as two particles
move closer and closer together, the pressure gra-
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Figure 4: Spiky kernel and its gradient for a sup-
port radius h of 2

dient will actually decrease and for ||r||= 0 it will
be zero. To remedy this problem the so called Des-
bruns spiky kernel (23) was designed and is seen
along with its gradient in Figure 4.

Wspiky(r,h) =
15

πh6

{
(h−||r||)3 0≤ ||r|| ≤ h
0 otherwise

(23)

This kernel is discontinuous in its first deriva-
tive and is shaped such that pressure forces will
increase exponentially as two particles approach
each other and as they pass each other the sign of
the pressure force will invert.

For pressure calculations the gradient of the spiky
kernel (24) is used.

∇Wspiky(r,h)=−
45

πh6

{
r
||r||(h−||r||)

2 0≤ ||r|| ≤ h

0 otherwise
(24)

3.5.3 Kernel for viscosity

We have no kernel for viscosity here. In astronomy
the ordinary physical viscosity is not used (see sec-
tion 4.1.2). Instead we have an artificial viscosity
which is primarily used to describe shocks and to
some smaller extent shear viscosity.

4 Particle rate of change

The physical parameters carried by a particle, and
describing it, are the position vector x, the velocity
vector v, its mass m and its internal energy ε .

Mass is a constant and need not be considered.

The rate of change for position is the velocity
which is known dx

dt = v, but the rate of change of
the velocity, the acceleration, dv

dt = a has to be cal-
culated from pressure forces, viscosity forces and
gravity forces as well as from the particles mass.
The rate of change of internal (heat) energy is cal-
culated as a side effect from viscosity and can ad-
ditionally be calculated from heat conduction and
radiation between the particles.

4.1 Acceleration

When calculating the forces controlling a fluid, it
is commonly gravity, pressure, viscosity and sur-
face tension which are used. We will ignore sur-
face tension since its influence is very small on
the large scale. While it has a huge influence
on a small drop of water, it is irrelevant in de-
scribing a ball of molten rock thousands of kilo-
meter in diameter. Here gravity will shape the
object along with pressure forces and viscosity.
For rotational gas clouds, and especially for accre-
tion disks, which is not simulated in this project,
magnetic forces are also relevant, but we will ig-
nore that force here since we will primarily deal
with models where the effect is not visible. The
magnetically induced jets of tiny charged particles
from the poles of a star and the magnetically in-
duced turbulence in gas clouds will be at a scale
that is beyond the focus of this text.

The total rate of change in velocity is given by

dvi

dt
= apressure

i +aviscosity
i +agravity

i (25)
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4.1.1 Pressure

Objects are pushed away from areas of higher
pressure towards areas with lowerer pressure.
Therefor knowing the pressure field P, or rather its
gradient ∇P, lets us calculate the pressure force.
The force is then the negative gradient (26). The
pressure is first calculated for each particle from
the density ρ , the temperature T and a suitable
Equation Of State as described in section 5. Then
the pressure gradient is calculated through direct
summation.

Fpressure =−∇P (26)

F pressure
i =−ρi ∑

j 6=i
m j

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇W (ri j,hi j)

(27)

which gives the acceleration

apressure
i =−∑

j 6=i
m j

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇W (ri j,hi j) (28)

4.1.2 Viscosity

Viscosity describes the internal friction among the
particles in a substance. There are two general
types which are bulk viscosity and shear viscos-
ity. Bulk viscosity describes viscosity between
particles being pushed into each other by colli-
sion while shear viscosity is viscosity from par-
ticles moving past each other. It transforms or-
dered macroscopic kinetic energy into random mi-
croscopic kinetic energy.

In astronomy viscosity is generally dropped from
simulations [Flebbe et al. 1994]. The scale of
both time and space is such that the ”ordinary”
physical viscosity often has very little influence.
Shocks from impacts are however quite important
and must still be taken into account since they are

not described by the pressure forces. The mo-
mentum lost from pressure forces, when particles
collide, is returned as soon as the particle have
come to a stop and start to move away from each
other again. Momentum lost to shocks is not re-
turned and while the total momentum for all par-
ticles is constant, the momentum for the individ-
ual shocked particle is irreversibly converted into
heat. In other words, particles bounce elastically
off of each other when controlled only by pressure
forces while viscosity better described an inelastic
collision. Pressure forces alone also rarely prevent
particle inter penetration.

The acceleration from viscosity is given by

aviscosity
i =

1
2

N

∑
j=1

m j ∏
i j

∇W (ri j,hi j) (29)

Here Π is artificial viscosity tensor which was first
defined by Monaghan in 1989 [Monaghan 1989]
and which is used to describe shocks in colliding
material. For this reason it is only active for par-
ticles moving towards each other while it is zero
for particles moving away from each other. The
artificial viscosity tensor for two particles i and j is

∏
i j

=
−0.5αµi j(ci + c j)+β µ2

i j

0.5(ρi +ρ j)
(30)

where the parameters α is a combined shear and
bulk viscosity that dampens post-shock oscilla-
tion and is dominant at low relative velocities.
β is used to get a Neumann-Richtmeyer viscos-
ity which is also used in other simulation meth-
ods such as a grid based finite element simulation.
This term is dominant for high relative velocities.

In many simulations, the parameters are set to α ≈
1 and β ≈ 2.

µi j =

{ vi j·ri j

hi j(|ri j|2/h2
i j+η2)

f or vi j · ri j < 0

0 otherwise
(31)
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Here ci is the speed of sound at particle i as de-
scribed in section 5. η2 is a stabilizing term gen-
erally set to 0.01. vi j is the difference in velocity
vectors between particles i and j.

4.1.3 Gravity

Gravity is given special treatment in section 6.

4.1.4 Total momentum equation

Combining and rewriting all of the above into one
momentum equation gives

dvi

dt
=−

N

∑
j=1

m j

(
pi

ρ2
i
+

p j

ρ2
j
+Πi j

)
∇W (ri j,hi j)−∇φi

(32)

The gravity potential at particle i is represented by
φi.

4.2 Change in internal energy

If temperature is relevant in a simulation then in-
ternal energy needs to be included. We deal pri-
marily with the internal energy of a particle and not
its temperature. The relation is given through the
specific heat capacity c, having the unit kJ/(kgK),
of the material so that T = ε

mT

The internal energy ε changes due to the loss of
kinetic energy from artificial viscosity and due to
heat diffusion between neighboring particles as
well as due to energy being radiated from parti-
cles. In our models the primary cause of a change
in energy is from artificial viscosity and compres-
sion while heat diffusion and radiated heat work
too slowly and too weakly to have any significant
impact on the results. All three will be described
here, but only the energy from artificial viscosity
will be implemented in the simulator.

This means that momentum can be transfered into
heat due to viscosity and compression. While the

energy from compression can be transfered back
to momentum, the heat from viscosity will never
leave the particle which received it since it can nei-
ther be diffused away nor radiated away and it will
not transfer into momentum again.

Heat from viscosity The motion energy lost
from artificial viscosity is converted into internal
energy through the following relation

dε
viscosity
i
dt

=
N

∑
j=1

m j

2 ∏
i j

vi j ·∇W (ri j,hi j) (33)

Heat from compression As a gas is com-
pressed, the temperature increases and so does the
pressure. This is due to the simple fact that work
has been done to the gas in order to compress it.
This work is converted into heat. If the gas later
expands then the pressure inside it will do nega-
tive work and the gas will cool off again. This is
described as

dε
pressure
i
dt

=
N

∑
j=1

Pi

ρ2
i

m jvi j ·∇W (ri j,hi j) (34)

Heat diffusion In[Bodenheimer et al. 2007] the
following equation is given to describe heat diffu-
sion

dεi

dt
=−

N

∑
j=1

m j
(k j + ki)(Ti−Tj)(∇W (ri j,h)

(ρiρ j)||r2
i j||

Here k is the heat conduction quotient and T is
the absolute temperature. It is seen that the en-
ergy changes faster, the larger the heat conduction
quotient, and the larger the difference in temper-
ature, but it is also seen that even for pure alu-
minum with a relatively heat conduction quotient
of around W/(mK), heat ”moves” very slowly and
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it would take a long time for it to flow over the
thousands of kilometers which are the scale of our
simulations. It does however flow, and in some
models it should not be ignored if for example an
object is left for a very long time so that it can
equalize its temperature, but it is irrelevant for us
right now.

Heat radiation Heat radiation is described in
detail in [Bodenheimer et al. 2007] and is not re-
peated here. Radiative transfer is very important
for collapsing gas clouds but has little or no rele-
vance for other models unless they should run for
a very very long time. The solidification of the
Earths crust would have to be described through
radiation of heat but this is a very slow phe-
nomenon which we do not deal with here.

5 Equation of state

The relation between the physical properties, den-
sity ρ , pressure P and temperatureT is described
through what is known as an Equation Of State
EOS. Knowing two of the properties lets us cal-
culate the last one using the EOS for the particu-
lar material in question. A true EOS which accu-
rately describes the relationship among the three
variables over all values and all transitions is very
complicated as it has to take into account vari-
ous phase changes (changes between solid, fluid,
gas and plasma) and for mixed materials it is even
more complicated.

The current state of the art when talking about
EOS is known as ANEOS which is an acronym for
Analytical Equation Of State and which is a com-
puter program in itself and not a single equation.
This is often the EOS used in astrophysical simu-
lations when the thermal processes are the describ-
ing factor in the simulations. In the simulations
relevant to this paper, the actual EOS is known to
have very little impact on the results since the con-
trolling factor is mainly gravitational. We do still
need some measure of how pressure, temperature

and density relates to each other, but it does not
have to be super accurate.

5.1 Polytropes

A polytrope (35) is a model describing how pres-
sure relates to density for a fluid being compressed
under its own gravity. Planets and stars and even
spherical interstellar gas clouds are just that -
spheres of fluid held together by their own gravity.
The equation is derived by balancing the pressure
with the gravitational force. The pressure force at
all points inside the sphere should be in balance
with the gravitational force.

P = Kρ
(n+1)/n (35)

P is pressure, K is a tuning constant derived from
the ideal gas equation, ρ is density and n is the
polytropic index.

K is calculated from the following equation where
NA is Avogadros number, kB is Boltzmann’s con-
stant, T is temperature in Kelvin and µ is the
atomic weight of the particles. ρ is density and
n is again the polytropic index.

K =
NAkBT

µ
ρ
−1/n (36)

The polytropic index essentially describes the
compactness or how strongly pressure increases
with increasing density. A low index of 0.5 to 1
is describing a neutron star well while an ”ordi-
nary” star as the Sun may have an index of 3 while
a gas giant like Jupiter is described by an index of
2. It should be noted that a planet such as the cur-
rent Earth with a thin atmosphere, a solidified crust
and a fluid center consisting of different materials
with an inner iron core, is not described by a single
polytrope.

The missing part in the above equations is temper-
ature. A polytropic model describing both density,
pressure and temperature is found in [Wada and
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Kokubo ]. It is tuned to be used in a simulation of
the moon forming impact on proto Earth.

P = (γ−1)ρε +C
(

n
3
+1− γ

)
ρ

n/3+1 (37)

Again P is pressure, ε is the internal energy and C
is a constant defined to be 1 in this specific version
of the EOS. γ is the specific heat capacity which
is defined to be 1.01. The first term on the right
hand side is just the ideal gas equation while the
last term is describing the temperature indepen-
dent pressure based on the solidity of the material.

The only thing missing now is to relate the vis-
cosity of a fluid to the pressure, temperature and
density, but this is generally not included in astro-
physical simulations since the importance is ne-
glectable. There is an article describing the rela-
tions in some detail in [Nature ] but we will ignore
the effect here.

The paper [Wada and Kokubo ] cited previously
is an actual astronomically relevant simulation of
the moon forming impact which is carried out with
this much simpler EOS. For this reason it seems
perfectly reasonable that our much simpler simu-
lations are done with an EOS which is no more
complicated than the one used there.

We will use the above EOS throughout all experi-
ments for simplicity and since research [Wada and
Kokubo ] has shown that the EOS is primarily re-
sponsible for the smaller details in a model.

5.2 Speed of sound

Many equations require the speed of sound c to be
known. It depends on stiffness and mass of the
medium in which the wave travels and this can
be described in terms of change of pressure over
change in density (38) which is again obtained
from the EOS.

c2 =
∂P
∂ρ

(38)

For an EOS describing P as a function of ρ , the
speed of sound is given by differentiating this EOS
with respect to ρ which gives the final form for the
speed of sound

c2 =
∂P
∂ρ

=
n+1

n
Kρ

(n+1)/n−1 (39)

6 Gravity

While gravity can for smaller simulations be con-
sidered a simple force pulling evenly at every par-
ticle and where particle-particle gravitational pull
is irrelevant, things are different when dealing with
an astronomical simulation. Here the force of
gravity is the overall governing force and it there-
fore needs to be dealt with in an appropriate way.
There are two problems related to the force of
gravity. Firstly it has infinite range and secondly it
goes towards infinity for point masses when their
distance goes towards zero.

The infinite gravity at zero distance is dealt with
through gravitational smoothing in which the point
gravity source is replaced with a source with a non
zero radius. Obtaining the gravitational potential
is then changed from a point sample to what is in
essence an integral of the sources mass distribution
over a volume.

The problem with the infinite range of gravity
is dealt with exactly the opposite way around
through hardening. Here a distributed collection
of gravity sources will be approximated by a point
source rather than as the sum of individual poten-
tials.

Both methods rely on the same basic reasoning
which is described in the following.

6.1 Infinite gravity at zero distance

The force of gravity is defined as (40) where G is
the gravitational constant which is approximately
6.67E-11, m are the two point masses exerting a
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gravitational pull on each other and |ri− r j| is the
distance between the masses.

Fi j = G
mim j

|ri− r j|2
(40)

It is evident that for a distance of zero |ri−r j|= 0,
the force will be infinite. In the real world there
will never be a distance of zero between any two
particles, except possibly for two black holes col-
liding. In a SPH simulation there may well be radii
of zero or other very small values and the problem
needs to be addressed.

The first thing to note is that any SPH particle will
represent a collection or real world particles and
those particles are not assumed to be located at
the exact same point in space. Just as the kernel
smooths the contribution of a SPH particle the true
particles are more or less smoothed, or rather dis-
tributed, in space. This means that the distance to
all the real particles inside the SPH particle can
never be zero from any position in space as seen in
Figure 5

The point is that even though SPH particles are
points and can be exactly on top of each other,
the same is never true for a group of real particles
”contained” inside the SPH particles. The ques-
tion is what the overall gravitational pull will be
at a position inside a particle group such as that
on Figure 5. At a glance we see that the hollow
particle is closest to the tree particles pulling it to
the left but at the same time there are four parti-
cles pulling it to the right and one of those is re-
ally close. For this setup the resulting force will
be small even though the hollow particle is located
close to the center of mass for the particle group.

Another way to think about this force not ap-
proaching infinity in the real world is a tunnel
through the center of Earth. If an object is thrown
into the hole, then it will initially be attracted with
a force of approximately m9.82m/s2 Newton, but
unlike for point masses the gravitational pull does
not increase as the object gets closer to the center
of Earth. Instead it diminishes and becomes zero

Figure 5: The solid particles are contained inside
the same SPH particle but their real world posi-
tions are not the same. Therefore the hollow par-
ticle can never have a distance of zero from all of
them at the same time

at the exact Earth center. This is because at this
position there is an equal mass pulling it from all
directions since all of Earth is ”above” the object
now.

If the falling object is replaced with another planet
and if Earth and the other planet can pass through
each other without colliding, then we could per-
form the same experiment again. The gravita-
tional pull is maximal just when the two planets
touch each other and then it diminishes as they
move their centers closer and closer to each other.
When the centers coincide then the resulting force
is again zero.

This shows us that real world objects, which are
not point masses, should be dealt with differently
than point masses since non point-mass objects
have zero and not infinite gravity when their dis-
tance is zero.

Gravitational softening A softening method
for gravity was proposed by Aarseth in 1963. It
uses a softening factor ε which to some extent de-
scribes the radius of the smoothed masses, as op-
posed to the previous hard point masses.
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Figure 6: Gravity calculated both as an integral
over an object and as a point source approximation

Fi j =
Gmim j(r j− ri)

(ε2 + |ri− r j|2)3/2)
(41)

This method has a maximum at a distance of 1√
2
ε

where the magnitude of the gravitational accelera-
tion is given by (42)

a j =
2Gmi

33/2ε2
(42)

It should be noted that the expression for point par-
ticle gravity and for smoothed particles are iden-
tical at an infinite distance at which point the ε

term vanishes which is also what we see for the
1D example in Figure 6. Here the object exerting
the gravitational pull is defined by its density func-
tion as ρ(x) = 1

2 for −1 ≤ x ≤ 1 which integrates
to a mass of one over that interval. The gravita-
tional pull felt at position is then F(position) =∫ 1
−1

0.5
(x−position)2 dx.

Smoothing factor and kernel smoothing
length When this smoothed gravity is used in
SPH simulations one generally set ε equal to the
smoothing length h of the SPH kernels. This is
mainly to ensure that the numerical resolution of

the gravity force matches that of pressure, viscos-
ity and what other forces might be included in the
SPH simulation. In the case of collapsing clouds
they must be same length since gravity and pres-
sure forces are the two forces controlling collapse
and expansion. if one force is given an advantage
over the other, then that can be the single factor
triggering or preventing the collapse.

6.2 Gravity’s infinite range

While other forces in a SPH simulation are gen-
erally limited by the compact support of the ker-
nels, the same can not be done for gravity. In
astronomy gravity is the dominant force because
of its infinite range and because it is always at-
tractive. Gravity is the weakest of the four fun-
damental forces, those being gravity, electromag-
netism and the weak and the strong nuclear force,
but while the nuclear forces both have a very lim-
ited range gravity and electromagnetism have an
infinite range. The reason the very strong force
of electromagnetism is not overpowering gravity
is that gravity always attracts masses to each other
while electromagnetism both attracts and repels
charged objects. On the large scale the attractive
and repulsive force of electromagnetism cancels
each other out which is not the case with gravity.

This infinite range and large influence of gravity
means that an N-body simulation will have to per-
form 1

2N2 gravity force calculations to find the re-
sulting force acting on every particle in a group of
N. For large N this is a severe limitation.

Where there is no way around the N2 complexity
for the absolutely precise theoretical gravity calcu-
lations, one can perform accurate enough calcula-
tions at a complexity of O(n log n) using a spatial
partitioning such as an oct-tree for a 3D scene.

As it was noted for the smoothed gravity, a collec-
tion of gravity sources will sum to the same as a
single gravity source when the distance is infinite.
This means that at an infinite distance the result-
ing gravity from a group of gravity sources will
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Figure 7: Gravity from the two solid objects is the
sum of F1 and F2 but can be approximated by F3

be the same whether it is calculated as a sum of
sources or as a single source located at the center
of mass and with a mass being equal to the sum
of all masses. When the distance is not infinite,
the two methods will give different results and the
simplification with a single point mass will be in-
creasingly inaccurate as the distance shrinks or as
the particles spread out.

As seen in Figure 7 the gravitational pull, at a posi-
tion to the right, from the two solid objects can be
calculated as the sum of each objects pull F1 and
F2. This is a correct calculation. The resulting pull
can also be approximated by F3 which is the pull
from the hollow, virtual, object located at the cen-
ter of mass of the solid objects and having a mass
equal to the combined mass of the solid objects. It
is a discretization since F3 is only approximately
equal to F1+F2. There are two reasons for this.
One is the fact that both F1 and F2 are 2D vec-
tors and their vertical components are opposite to
each other and therefore sum to zero. This leaves
only the horizontal components which means that
F1+F2 is always less than F3 calculated as if from
a single gravitational source. The other is that the
distance to the two particles is not equal to the dis-
tance to the center of mass. This means that even
when the particles are located on a single line to-
wards the position, for which the gravity is calcu-
lated, the approximated force will not be the same

as the true force.

As the fraction s/d approaches zero, the error will
approach zero as well since the relative vertical
force will go towards zero and so will the rela-
tive difference in distance between the each par-
ticle and center of mass. This is the reasoning
behind the Barnes-Hutt simulation method which
uses the fact that the error, when approximating
a group of gravity sources by a single combined
source, will be very small for groups which are ei-
ther very compact or very far away.

The Barnes Hutt method If 3D space is
recursively partitioned into increasingly smaller
cubes using an oct-tree until the cubes are either
empty or contain only a single particle, as seen
in Figure 8, then the nested cubes can be stored
in a tree structure where each node contains either
other nodes or a single particle. The largest node
containing all others is designated the root node
and the nodes deepest in the tree which contain
only a single particle are designated leaf nodes.

The root node represents the entire 3D space of the
scene and each child node the represents increas-
ingly smaller parts of this space.

When building the tree, one have to partition a cell
into potentially (in 3D) 8 new cells whenever it
contains more than a single particle. This is an
O(n log n) operation for the entire tree. When-
ever a new node is created, the center of gravity
and the combined mass of all particles contained
within the bounds of the node, are stored. The size
and location of each node is implicitly given by its
parent node since its three sides will each be half
the length of the parents sides.

When the tree is constructed, one, one can for
any node in constant time O(1) acquire the com-
bined gravitational pull from all particles within
its bounds. This regardless of the number of parti-
cles actually contained herein, by looking only at
the center of mass and combined mass inside the
node. This changes the O(n2) computational cost
of calculating N-body gravity to O(n log n), but at
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Figure 8: A 2D quad tree partitioning space un-
til the cells are either empty or contain only one
particle

a cost. As mentioned previously it is not correct
to approximate the gravitational pull from a dis-
tributed mass as if it was concentrated in a single
particle located at the center of mass. The error
depends on how distributed the mass really is and
how far away it is.

The way the Barnes-Hutt method deals with the
point approximation error is by calculating a value
for particle spread divided by distance. The
smaller this value is, the smaller the error is. When
the value approached zero, at infinite distance or
when a number of particles truly are all located at
the same point, then that error measure also van-
ishes. One then defines a maximal acceptable error
measure theta and when calculating gravitational
pull from a region of space, contained in a tree
node, this measure is compared with the cube size
and cube distance since the spread of a number of
particles in a cube cannot exceed the size of the
cube. Therefore the size of the cube places an up-
per bound on how spread out the particles in it can
be.

When the error from point approximation exceeds

the allowable value θ then the approximation is
abandoned and instead the gravitational, point
based, pull from that region is replaced with the
sum of the pull from each of the eight child nodes.
This recursion ends when the child node is small
enough or far enough away or when it contains
only a single particle at which point the point as-
sumption is no longer inaccurate.

The following procedure is used to calculate the
gravity at a position P from a node N. This is ini-
tially called with N=root.

1. function barnesHuttGravity(P, Node)

2. gravity = 0

3. foreach node N in Node

4. calculate distance d between
N.CenterOfGravity and P

5. calculate error as N.sideLength / d

6. if error< θ then gravity = grav-
ity + pointForce(P,N.CenterOfGravity,
N.CombinedMass)

7. else gravity = gravity + barnesHuttGrav-
ity(P,N)

8. return gravity

To provide a better estimate for the error by ap-
proximating a group of particles, all inside the
same node, one could calculate measures such as
the variance for a normal distribution describing
the particles and then use this instead of the cubes
side lengths, but while it would indeed be a more
correct estimate, using the side lengths do in fact
give the upper bound on the error which is the im-
portant thing in this approximation. Calculating a
variance for the particles, and there may be a lot
of particles in the early nodes in the tree, is much
more costly and the benefit from doing so is very
little. It may save the gravity calculation from go-
ing down a few steps deeper into the tree here and
there when the particles are tightly packed, but that
does little good compared to the guaranteed extra
cost when building the tree. For this reason the er-
ror is always calculated from only the distance to
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a cells center of mass and the cells side lengths.

A little perspective It should be noted that
even though this method is considered an approx-
imation used to speed up the computation, there
are really never a situation where such approxima-
tions are not used. When simulating the gravity
from the sun on Earth, both objects are approxi-
mated by point masses and we do not try to calcu-
late the gravity from each individual particle in the
Sun and Earth. Unless the calculations are done at
a sub atomic level, approximations are used. Ap-
proximating a huge galaxy millions of light years
away by a point will give a smaller error than do-
ing the same approximation for the Moon a few
hundred thousand kilometers away.

Another factor worth keeping in mind is that when
a force is calculated as a sum of a very large num-
ber of smaller forces, then roundoff errors will be
building up and eventually this supposedly correct
summation of forces will result in an inaccurate
value. This means that with finite precision num-
bers, there is a limit as to how good an accuracy
is obtainable; with or without point mass approxi-
mations.

When an object is not a point but is blurred, then
some parts of it will be closer to the observer
and others will be farther away. Due to the fact
that gravity depends on the distance squared, this
means that gravity is more influenced by the part
of the object which is closer than the object center,
than it is by the part that is farther away. In other
words; moving one half closer will increase grav-
ity more than what is lost from pushing one half
farther away. This means that the more an objects
mass is distributed, the stronger the actual gravity
will be. This is illustrated in Figure 9 where it is
seen that the gravity contribution from the closest
(to the right) parts of the object is larger than the
contribution from the far side.

A perhaps better way to see that this is true is by
considering an object with mass m at a distance r
from an observer. We now split this object into two
halves and move one a distance δ towards the ob-

Figure 9: It is seen that the mass closest to the
detector, at the right hand side, contributes more
to the gravitational pull than the mass to the left.

server and the other δ away from the observer. Ini-
tially the force F from the object was proportional
to F1 as seen in (47). After the move the force is
now F2. If we subtract the forces from each other
then we see that F2 is in fact larger than F1 when it
is assumed that δ is strictly less than r. Otherwise
one object will be displaced to the other side of the
observer.

F1 =
m
r2 (43)

F2 =
1
2m

(r+δ )2 +
1
2m

(r−δ )2 (44)

F2−F1 =
1
2m

(r+δ )2 +
1
2m

(r−δ )2 −
m
r2 (45)

F2−F1 =
−δ 2m(δ 2−3r2)

r2(δ 2− r2)2 (46)

(47)

7 Level of scale in time and
space

Computer scientists often know SPH from simu-
lating water or some other earthly fluid. In astron-
omy there are different issues to deal with. For
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Figure 10: A tree structure describing the 2D spa-
tial partitioning seen in Figure 8. The leftmost
node is the root which contains all other nodes. A
child node with no text is just a container of other
tree nodes while a node with text is a leaf contain-
ing a single particle. Null nodes are nodes which
neither contain other nodes nor contains particles.
They are generally not created but are shown here
for completeness.

one, the simulated material is generally compress-
ible and can vary from a thin gas to the dense
center inside a star. This will be a problem if
the smoothing length is constant and the same for
all particles. This can be solved using different
smoothing lengths or using sink particles as de-
scribed in section 7.3.

Another issue is that the forces acting on the parti-
cles will be vastly different in a simulation where
some particles may be involved in a planetary col-
lision while other particles are slowly orbiting the
collision area. This will cause huge slow downs if
all particles are advanced in time by the same step-
sizes, which leads to the use of individual and even
adaptive time-steps.

Yet another issue which is relevant in astronomy
is the level of scale. Simulating the solar system
with at least one particle for Earth, would require
the larger bodies such as Jupiter and the sun to con-
sist of an enormous number of particles if all par-
ticles have equal mass. This is generally solved
by avoiding such scenarios since it is rare that it is
required to simulate the large scale and the small
scale simultaneously. The solution can instead be
to use large scale simulations to find initial states
for small scale simulations.

7.1 Individual adaptive smoothing
lengths

As described in 3.3 there is an optimal number of
support particles. Any smaller that this value and
the solution becomes too coarsely sampled and in-
accurate. Any more support particles and the solu-
tion becomes too smoothed and inaccurate in ad-
dition to it being more costly to evaluate.

When simulating an astronomical scene, the varia-
tion in density among particles can be enormous
if the simulation tries to deal with more than a
small subset of a problem. SPH models have been
used to simulate the formation of solar systems as
well as the collapse of interstellar gas clouds to the
point where stars are formed in the denser regions.
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Both problems span from very thin gas clouds to
quite dense regions which contain enough material
to form stars or planets. For this reason it seems
obvious that if all particles have the same support
radius then the particles in the denser regions will
have a larger number of supporting neighbor parti-
cles than the particles in the thin regions have.

The solution is to initialize the support radius of a
particle to a value which gives it a good number
of support particles and then let this radius change
over time along with the density. This lets a par-
ticle travel from a region with thin gas, having a
large support radius, to a more dense region and
have its support radius contract accordingly so the
number of supporting neighbor particles remains
almost constant over time as described in detail in
[Bodenheimer et al. 2007].

Individual smoothing lengths Each particle i
should have its own smoothing length hi which
is optimal for that particle. When the simulation
starts, each particle will be initialized to the same
smoothing length h. Then a relaxation of each hi is
performed until the lengths give a reasonable num-
ber of support particles. This is not a lengthy pro-
cedure and it is performed only once before the
simulation starts.

Adjusting hi runtime There are two simple
ways to do this. If the change in density ρi over
time is known, then the change in hi can be based
on that as (48).

dhi

dt
=− hi

3ρi

dρi

dt
(48)

We will however not be using the change in den-
sity over time, but will instead calculate density
through direct summation, so dρ

dt is not readily
available. For this reason the other method (49)
will be used. It updates smoothing length based
on how well that length performed during the last
time step.

Figure 11: The convergence of the relaxation of
the variable smoothing length

As seen in Figure 11 the relaxation method quickly
changes hi to match the desired number of support
particles. The graph shows the convergence with
an initial support which is a thousand times too
large as can very well be the case when initializing
the particles to a global smoothing length.

hn
i = hn−1

i
1
2

[
1+
(

Ntarget

Nn−1
i

)1/3]
(49)

Hand tuning vs. relaxation Hand tuning a
smoothing length get optimal number of interac-
tions will result in the histogram shown in Figure
12. While most particle have the desired number
of interactions, many do not. Further more, this
will change over time as the particles move and
the smoothing length will have to be constantly up-
dated which is hard with hand tuning.

As an alternative the histogram of a simulation
which dynamically adapts the smoothing lengths
is displayed. This shows very much better results
and the physics frame rate remained unchanged
due to the simplicity of the method.
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Figure 12: Histogram showing the number of in-
teractions per particle with every particle having
the same smoothing length. The target was 25

Figure 13: Histogram showing the number of in-
teractions per particle with the particles having in-
dividually adapted smoothing lengths. The target
was set to 25

It should be noted that some particles may even-
tually become very isolated and in that case, the
relaxation scheme will expand their smoothing
lengths far beyond what is reasonable. A very
isolated particle should be isolated rather than
smoothed beyond recognition. For this reason a
maximal smoothing length will often make sence.
Additionally it may be a good idea to use a mini-
mal smoothing length to avoid numerical instabili-
ties and/or very small time-steps when particles for
one reason or another become very compressed.

Symmetric interactions One obvious problem
with different smoothing lengths is that there may
be a situation in which one particle has the other
inside its smoothing radius while the opposite is
not true. Newtons third law of motion states that
whenever an object exerts a force F on another
body then that other body exerts a force -F on the
first body. It is all about action and reaction. If
one particle has the other inside its support and the
opposite is not the case, then the first particle will
feel a force but the other particle will not. This is
a problem if it is not fixed. A gentler version of
this problem is two particles which are each in the
others support radius but have different smoothing
lengths and therefore scale the contribution of the
other particle differently.

If one particle has the other in its support and the
opposite is not the case, we still consider it a pos-
sibly interaction and will continue to the next step
which is to establish the smoothing length and ker-
nel weight.

For two particles in each others support radius but
with different smoothing lengths, the symmetric
way of handling this is to apply an average ker-
nel to both particles. This can be done in several
ways (50) to (53)

W (ri j,hi j) =W (ri j,
1
2
(hi +h j)) (50)

W (ri j,hi j) =W (ri j,max(hi,h j)) (51)
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W (ri j,hi j) =W (ri j,min(hi,h j)) (52)

W (ri j,hi j) =
1
2
(W (ri j,hi)+W (r ji,h j)) (53)

According to [Liu and Liu 2003] there is no ex-
perimental results indicating if one of the meth-
ods is better and which one it would be. Obvi-
ously they are different. While (51) will tend to
include more neighbors than the others and (52)
will include fewer. We note that while (53) may
intuitively seem more ”correct” it will also require
double the number of kernel evaluations and since
that is expensive, the method seems like the worse
choice of the four.

We will use (51) for two reasons. First because it
is cheap to evaluate and secondly because if any
one particle ”sees” the other in its support, we are
guaranteed that |ri j| ≤ hi j which means that the
particles will both be inside the combined support
radius. This is not always the case using (50)

When reading the earlier sections about kernels,
where we were still not dealing with individual
smoothing lengths, W (ri j,h) should be replaced
mentally with the symmetric kernel W (ri j,hi j). In
other words, the equations and the methods are
the same - only the way the kernel is evaluated is
slightly different when using individual smoothing
lengths.

7.2 Individual adaptive time-steps

When numerically solving partial differential
equations using an explicit time-stepping scheme,
not all time-steps will lead to a convergent so-
lution. A condition known as the Courant-
Friederichs-Lewy condition or the CFL condition
describes how the time steps must depend on the
propagation of physical effects in the simulation.
For a convergent solution at least the CFL condi-
tion must be satisfied. This does not ensure con-
vergence in itself though and one generally have
to satisfy additional conditions as well.

As an addition to the CFL condition (54) one gen-
erally define a force related maximal time-step
(58) which ensures that particles currently under-
going violent accelerations will not take too large
time steps. One may also add a velocity-based
condition (59) which deals with particles already
moving very fast.

Finally several methods for numerical integration
allows the user to define a maximal allowable er-
ror over a time-step and then adjust the step-size to
keep the error within that bound. This is supported
by the commonly used Runge Kutta method or the
Runge Kutta Feldberg. This actual integrator se-
lected will be described in section 8.

The time-step used to advance the simulation will
be the smallest of the ones calculated with the
above mentioned methods.

7.2.1 CFL condition

The CFL condition states that the numerical do-
main of dependence must contain the physical do-
main of dependence. This can be rephrased as that
the numerical propagation speed should be at least
as great as the physical speed. In a grid based
scheme with a distance between grid points of ∆x
and a time-step of ∆t, information can travel one
grid point every time step which is a velocity of
∆x/∆t . If, as an example, a physical wave travels
with a velocity of c, then the CFL condition states
that ∆x/∆t ≥ c since numerical information of the
wave must propagate through the grid at least as
fast as the wave itself.

Looking at ∆x/∆t it is clear that if the grid spac-
ing ∆x is small then the time-step ∆t must be just
as small to satisfy the CFL condition. Also if the
physical wave speed c is large, then either the grid
spacing must be large, or the time-steps must be
small.

SPH is not a grid based scheme, so there is no fixed
grid spacing. Instead there is a smoothing length
which represents the ”distance” between particles.
This again means that for the CFL condition to
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hold, a small smoothing length or a high velocity
physical property will require a small time-step.

If the smoothing lengths are optimal, as described
in section 7.1, then they will generally not be the
same value. If additionally the particles have dif-
ferent velocities then both the ”grid-size” and the
physical signal velocity are different among the
particles. This in turn means that the time-steps
should also be different.

The physical signals traveling through the simula-
tion can be pressure waves and moving particles.
Neither one of those signals should travel faster
than the numerical signals. This means that the
CFL condition is a condition based on both par-
ticle motion v and sound speed c in the material
being simulated.

Rewriting the original CFL condition to SPH for
the time-steps gives

∆tα ≤
h
c

(54)

which ensures that deformation waves through the
medium will not travel faster than the numerical
signals.

For models with artificial viscosity and fast mov-
ing particles the simple CFL condition is rewritten
into (55) or (56). The first version assumes same
step-size for all particles and then all particles step
through time together while the other version is
used for individual time-steps. We will implement
both and make a comparison to demonstrate the
benefits of time-steps which are limited to ensure
stability but which are also optimized to individual
needs.

∆tCFL = min
[

hi

ci +0.6(αci +βmax j|µi j|

]
(55)

As described in section 4.1.2, α and β are con-
stants defining the viscosity. c is the speed of
sound and µi j is describing relative motion vec-
tors between two particles relative to smoothing
lengths and distance.

Calculating the CFL condition based time-step for
particle i, rather than for all particles, is done as
follows.

∆tCFLi =
C0hi

hi|∇ · vi|+ ci +1.2(αci +βmax j|µi j|)
(56)

Here C0 is the Courant number which is gener-
ally set to 0.3. The velocity divergence ∇ · vi is
added and is defined by (57). Note that max j|µi j|
is meant to be understood as : given a particle i,
find the |µi j| for all particles j, which is maximal.

∇ · v =− 1
ρi

N

∑
j=1

m jvi j∇W (ri j,hi j) (57)

7.2.2 Force-based limiter

The CFL condition is based on the current situa-
tion - namely the velocities and smoothing lengths.
The force-based limiter is simply conserned with
the acceleration of particles and is defined as

∆taccl = min
(√

hi

|ai|

)
(58)

7.2.3 Velocity-based limiter

The velocity-based limiter is very simple and it
simply limits a particles step-size relative to its
smoothing length. A particle should not move
more than a fraction of its smoothing length every
timestep since it would essentially move too far
into the unknown. This condition is to some extent
included in the viscosity-dependent CFL condition
described earlier.

∆tvi = min
(

Co
hi

vi

)
(59)

C0 is again the Courant number, which is set to 0.3
here.
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7.2.4 Handling individual time-steps

When each particle has a CFL condition-based
time-step calculated, the next step could be to take
the smallest time-step and advance all particles by
that, but this would not be optimal. Often most of
the particles are capable of taking large time-steps
while a few particles are moving so fast, undergo-
ing so strong accelerations or ate in so close prox-
imity with other particles that they have very small
time-steps. It would be silly to let all particles walk
forward with baby steps because a few have to.

As described in [Saitoh and Makino ], one solu-
tion could be to have a user defined largest time-
step and then group the particles according to their
time-steps as they best match a power of two di-
vision of the user defined time-step. If the user-
defined largest time-step is 1s, then the power of
two divisions will be 1s/2, 1s/4, 1s/8 etc. A par-
ticle with a time-step size of 0.3s would then be
in between 1s/2 and 1s/4. The time-step size to
choose should then be no greater than the step size
determined through the CFL condition, so the par-
ticle would be assigned to 1s/4=0.25s which is the
closest step not greater than 0.3s.

When this is done for all particles, the few particles
which have very constrained time-steps will be in
one group and the other particles which can take
larger steps will be in a few groups with large step-
sizes.

As seen in Figure 14 most of the particles have
time-steps much larger than the small group with
the small step-sizes. It would be wasteful, and un-
nessecary, to impose the smallest step-size on all
particles.

Particles stepping with different step-sizes
In a single simulation step a couple of things
happen. First all particle-particle interactions are
found, next the forces from gravity and particle in-
teractions are found and accumulated and then the
particles are advanced in time to their new posi-
tion. Finding interactions and calculating forces is

Figure 14: Histogram showing the distribution of
safe time-step sizes among the particles

the most expensive part. Advancing the particles
is very cheap in comparison.

The way one can use the different time-step sizes
to speed up computation is known as kick and
drift. A particle is ”kicked” by the forces acting on
it and then it ”drifts” along until kicked again. The
particles with the large time-steps can drift along
for a long time between kicks while the other par-
ticles need a lot of small kicks. The reasoning
is that the force function f (x, t) for the particles
is quite constant for the large time-step particles
while it changes a lot for the small time-step parti-
cles. Therefore integrating the force over a period
of time requires many small sub-integrations for
some particles while others can do it in one go.

Therefore the simulation starts with a kick to all
particles and then they all drift to the next point in
time which is to +∆tsmallest . Here the particles as-
signed to that step-size will locate interactions and
calculate forces as well as CFL condition based
time-steps and will then be kicked and drift un-
til the next step is reached. Eventually time will
have advanced enough for the particles with large
time-steps to be updated and kicked as illustrated
in Figure 15. It is seen that initially all four par-
ticles are kicked. Shortly after that, particle a is
kicked again while the others drift. This means
that over an entire user defined maximal time-step,
a is kicked 8 times, b 4 times, c 2 times and d only
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Figure 15: Four particles a,b,c and d have different
time-steps and are kicked at different intervals

once. This is 15 kicks compared to the 32 kicks
needed if all particles move with the total smallest
time-step. Obviously the savings are greater the
larger the different in step-size is.

Neighbors with different time-steps In as-
tronomy there are situations where a group of par-
ticles will be accelerated violently in such a way
that they will move far into regions with other par-
ticles which have much longer time-steps than de-
sirable when encountering the fast moving intrud-
ing particles. one such example is a super nova
explosion where the simulation contains a some-
what dense star surrounded by a thin cloud of gas.
The time.steps will be smaller for particles in the
star than for particles in the gas cloud, which is
reasonable. When the star goes supernova, the
star-particles will be pushed into the gas cloud
with such a force that they will intrude far into
the cloud before the cloud particles, due to their
longer time-steps, even discover that something
is going on. This is known as a Sedov problem,
which has a known analytical solution, and the gas
particles will generally have step-sizes a thousand
times larger than the particles inside the star.

The solution proposed in [Saitoh and Makino ] is
to let step-size propagate through the particles due
to neighbor relations, regardless of the forces, ac-
celerations and velocities arising from those inter-
actions. Briefly put, if a particle has a neighbor
which has a much smaller time-step size than it-
self, then it should shrink its own step-size to a
value not too different. Analysis of the Sedov
problem have shown that good results are obtained
with a limit on difference of 4.

If a particle a with a small time-step comes into
contact with a long time-step particle b and the dif-
ference in step-size is larger than 4, then b red uses
its step-size to no more than four times that of par-
ticle a.

in the simulations we perform here, this has little
visible effect, but it is a thing which must be kept in
mind for other more violent simulations and which
should be considered for completeness.

7.3 Sink particles

In large scale simulations where particles are sup-
posed to clump together and form objects with
much higher density that the systems initial den-
sity, it is generally required to handle the high
density areas in a special way. Such simulations
are generally the collapse of interstellar gas clouds
as it forms stars or the condensation of accretion
disks around stars as they form planets.

A good example of a SPH simulation of star
formation is seen in http://www.youtube.com/

watch?v=YbdwTwB8jtc and described in [Bate
2008] where a gas cloud collapses under its own
gravity and begins to expel new stars, shown as
bright white particles, from the denser regions.
White particles representing stars would ordinar-
ily be a very tightly packed group of particles and
this tight group would require tiny time-steps for
accurate simulations as described in section 7.2.

The tight particle groups will describe the parti-
cles inside stars, but they will do so very poorly
since the resolution is no where near good enough
to describe the internals of a star. Further more,
the groups will require much computational power
and simulations tend to come to a grinding halt as
soon as the first stars begin to form as described
in [Bate et al. 1995] even when using individual
time-steps. It is clear that as soon as the particles
have clumped together to a star, their individual
behavior is no longer relevant for a simulation of
star formation in a collapsing cloud.

The white dots in the simulation are however not
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represented by a number of tightly packed parti-
cles but by a single so-called sink particle. This
one particle represents the newly formed star and
it holds the combined mass, momentum and inter-
nal energy of the particles which joined together
to form the star. The sink particles interact with
their surroundings through ordinary boundary con-
ditions. Any particle coming within a limiting dis-
tance from the sink particle is absorbed and its
mass, momentum and internal energy is added to
the sink.

If for some reason a complete simulation ranging
from the collapse of the interstellar cloud to stars
and solar systems with planets and moons is de-
sired, then the solution would be to run the large
scale simulation first and at some time along the
way stop and use the results as initial values for a
simulation at a smaller scale. The density distribu-
tion around sink particles (stars) could be used as a
starting point for a detailed simulation of an early
solar system and from this point on the formation
of planets could be observed.

An early example of large scale collapse can
be seen at

youtube.com/watch?v=g0k8Ja6Fws0

where we have used a SPH N-body model to simu-
late the collapse of a cloud showing how individual
areas collapse early on and how those condensa-
tions later merge to form larger objects. When the
video zooms in one one such object it is clear that
it consists of a very large number of very tightly
packed particles and that the behavior of those par-
ticles is of little relevance to the large scale details.
This shown model was a very early implementa-
tion of the simulator.

General idea As a region becomes very dense,
the particles in the region will each have a higher
density. At a certain limiting density a particle
may be transformed into a sink particle with a cer-
tain accretion radius. All other particles within this
radius will be swallowed by the sink particle and

contribute with their mass, momentum and inter-
nal energy to the sink particle.

The idea is simple, but it is complex when it has
to be implemented correctly so that the physical
properties of the simulation will not change due to
the presence of sink particles. Particles near the
sink particles will be next to an artificial boundary
(the accretion volume surrounding the sink) and
particles should be able to move through the outer
area of the accretion volume and still escape if only
their velocity is high enough.

Because sink particles are more or less a require-
ment for large scale accurate simulations in as-
tronomy, they are mentioned here. Because of
the complexity of implementing accurate sinks, we
will not touch the subject further. The paper [Bate
2008] has a very detailed introduction to the con-
cept.

8 Time integration

Advancing the particle states from time-step to
time-step is carried out using a numerical integra-
tion method known as the Beeman algorithm. It is
derived from the family of Verlet integrators and
is described in detail in [Beeman 1976] where it is
also compared to a number of other integrators.

The Beeman algorithm (60) is a symplectic
method which means that its phase space area is
constant. Points in phase space are velocity and
position which for 3D gives a 6D phase space.
Having a constant area in phase space means that
the energy will remain constant. This is a quite im-
portant property for any N-body simulation where
energy growth can result in particles being ex-
pelled from the simulation and where loss of en-
ergy will let particles collide sooner than they
should.

The algorithm comes in a one step form and in a
two step form as a predictor-corrector for the situ-
ations where acceleration is dependent on velocity
which is the case in out simulation having a veloc-
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ity dependent viscosity.

x(t +∆t) = x(t)+ v(t)∆t +
2
3

a(t)∆t2− 1
6

a(t−∆t)∆t2 +O(∆t4)

v(t +∆t)pred = v(t)+
3
2

a(t)∆t− 1
2

a(t−∆t)∆t +O(∆t3)

v(t +∆t) = v(t)+
1
3

a(t +∆t)∆t +
5
6

a(t)∆t− 1
6

a(t−∆t)∆t +O(∆t3) (60)

To take a time-step, the next position x(t +∆t) is
first calculated based on the current position x(t),
velocity v(t) and acceleration a(t) as well as the
previous steps acceleration a(t −∆t) . The same
is done for the next velocity v(t + ∆t). This re-
sults in a predicted velocity. Based on the the new
position and that predicted velocity the next steps
acceleration a(x,v), which is a function of both po-
sition and velocity, is calculated. This information
is then finally used to correct the velocity v(t+∆t).

This results in a fourth order accuracy for position
and third order accuracy for velocity, where ordi-
nary Verlet integration only gives second order ac-
curacy for the velocity.

Seeing how velocity is important for accurate cal-
culation of momentum and how we have a highly
relevant velocity dependent viscosity force, we
have opted for the Beeman algorithm to get its
higher accuracy while still being relatively cheap
compared to other methods such as the popular
RK4. That method even has the disadvantage that
it looses energy over time which is undesirable.

9 Astronomical models

A few models are simulated and commented on
in the following. It should be noted that they all
generally have unrealistic scaling of forces or time.
This is to ensure that something interesting will
happen quickly. It is the same ”interesting” thing
as would happen in the real world but much faster.

Take the formation of planets in the accretion disk
surrounding a star. In reality this would take sev-
eral million years for something interesting to hap-
pen. Over this period of time the disk would rotate
millions of times around the star. If we want to

see a planet within 5 minutes, then we would have
to simulate some million revolutions of the disk
which would amount to several thousand revolu-
tions per second. That is simply not possible since
each revolution would in turn require a fair amount
of time-steps to be just a little bit realistic.

The solution is for us to speed up accretion and
let the planets form over the duration of just a
small number of revolutions. This requires a very
high viscosity to make the particles lump together
and therefore the simulation is no longer accurate
though it still demonstrates the actual astronomical
model of orbiting dust forming planets.

9.1 Collapsing gas cloud

An interstellar gas cloud may eventually reach a
critical mass after which point it collapse under its
own gravity. Pressure forces will attempt to make
the cloud expand and gravity will try to crush the
cloud into a point.

youtube.com/watch?v=a-qTdkvbYes

The initial cloud will have some internal move-
ment and that movement will invariably give some
rotational momentum. Otherwise every motion of
every particle in the cloud would have to be bal-
anced by the other particles exactly.

During a collapse the rotational momentum re-
mains constant. For any particle moving relative to
the clouds center of mass, it will contribute some
angular momentum

L = r×m v (61)

where r is the vector from the center of mass to
the particle, m is the particles mass and v is the
particles motion vector. × is the cross product.

When r shrinks during the collapse, and L should
remain constant, v has to increase. This means
that as the cloud collapses, it will begin to rotate
faster and faster. This will in turn add ”centrifu-
gal” force to the particles trying to pull them out
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again and expand the cloud. At some point in the
collapse there will be balance between gravity on
one side trying to compress the cloud and pressure
and ”centrifugal” force trying to expand the cloud.

In addition to this, the densest central region may
form a star at which point that star will begin to ra-
diate energy and charged particles outwards. This
”sun wind” will contribute to the forces trying to
expand the cloud again.

9.1.1 Jeans mass

For a gas cloud to be stabile and not expand or col-
lapse it must be in hydrostatic equilibrium which
is defined as

dP
dr

=−GρM
r2 (62)

where P is the pressure, G is the gravitational con-
stant, ρ is the density, M is the mas of the entire
cloud and r is the radius of the cloud.

This is similar to the derivation of the polytrope
model section 5.1 in that it balances the pressure
gradient with the gravitational gradient.

If the right hand side of the equation outweighs the
left hand side, then the cloud will collapse. This
can happen if either the total mass is very large, the
density is very high or is the radius is very small2

or if the pressure is small. The low pressure can be
caused by a low temperature.

Jeans mass is defined as

MJ =

(
5RgT
2Gµ

)3/2(4πρ

3

)−1/2

(63)

and is derived in [Bodenheimer et al. 2007]. Its
derivation is based on the speed at which parti-
cles would fall towards the center of mass, thereby
compressing the cloud, compared to the time it

2The limiting radius is related to another term the Jeans
length

takes pressure to build up and oppose this com-
pression. The ”reacting time” for the pressure is
related to the time it takes a compression wave to
move through the gas. This again depends on the
speed of sound and the size of the cloud. If gravity
acts faster than pressure then the collapse is un-
avoidable.

The cloud, or parts of it, will collapse under a num-
ber of different circumstances which can be in-
duced by various processes. These processes are
briefly explained but it was too time consuming to
implement (even a simple one) a working simula-
tion of all the complexities of cloud collapses.

Low temperature A hot cloud will radiate heat
and if it is not too opaque then this heat energy
will be lost from the cloud and the temperature will
drop and a collapse can start. During the collapse
heat energy will be generated from compression
and some internal friction but it will still be ra-
diated away quickly enough for the cloud to not
increase its temperature. This is a an isothermic
collapse until the point where the cloud becomes
opaque enough to hold on to its heat.

High density A motion of the gas in an inter-
stellar cloud is believed to be controlled by mag-
netic turbulence. Charged gas moves which causes
magnetic fields which moves the charged gas. This
will produce areas of varying density and the high
density areas may collapse. Another cause of high
density may be nearby stars and especially super-
novas and black holes radiating particles from the
poles of their accretion disks [McKinney 2006].
This radiation will create a ”wind” which sweeps
gas with it and pushes the cloud together and in-
creases its density thus initiating star formation in
the collapsing regions.

9.1.2 Simulation

A plot showing the initial motion of 1000 parti-
cles with random positions in a 2D square and with
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Figure 16: The initial moments of the collapse of
a cloud

small random motion vectors is seen in Figure 16.
The lines a traces of the particles over a few initial
time-steps. During the traced time, the particles
are already beginning to move towards the center
of mass. The cloud was created in an unstable state
where the pressure was in no way enough to carry
the cloud.

Some time later Figure 17 the particles are all
moving quite close to the center of mass but still
there is not much rotation, but some time later the
central part of the collapse shows a clear increase
in rotation Figure 18.

The final rotating clump of particles as rendered in
the simulator is seen in Figure 19. The colors are
density colored using a hot colormap. The central
part has a high density colored yellow due to the
number of particles pressing in on it, just as one
would expect for a core, but just outside the core is
a lower density region colored red. This is caused
by the rotation. The entire structure rotates with
no differential motion due to the artificial viscosity
which means that there can be ”centrifugal” forces
pulling the particles out, but without being in bal-
ance with the gravity as ordinarily seen in orbital
motion.

The ”centrifugal” force (64) grows with distance

Figure 17: Particle traces during the first part of a
collapse

Figure 18: Zoom of particle traces during the last
part of a collapse
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Figure 19: Zoom of particle traces during the last
part of a collapse

from the center in a rigid rotating object

Fcentri f ugal = m
v2

r
(64)

since v increases with radius, but at the same time
the gravity shrinks with the distance from the cen-
ter. This is the reason there is a low density zone
and an actually almost empty zone in the object.
These are the unstable points where the forces will
pull particles away. Had this been visualized as a
surface plot, there would have been hills and val-
leys circling the center.

9.2 Origin of the Moon

The Earth Moon system have been a mystery for
a long time. The Moon is very large compared to
other moons and their planets. Its mass is less than
a hundred times that of Earth while for compari-
son the two Mars moons Phoebos and Deimos are
10 million and 100 million times less than that of
Mars. In other words: the Moon is so big that it
seems likely that it is not just a small object being
caught my the gravity of Earth. It would have been

very difficult for the Earth to have caught an object
of that size. The Moon is the solar systems fifth
largest satellite while the Earth is a dwarf in com-
parison with the gas giants Jupiter, Saturn, Uranus
and Neptun.

Adding to that is the fact that the angular momen-
tum of the Earth Moon system is very much larger
than that of other planet moon systems. Finally
Earth has a large iron core while the Moon has next
to no iron.

Prior to the discovery of the iron poor moon, the
theory was that since it was so unlikely that the
Moon was captured by Earth, the Earth and Moon
had to have come from the same collection of dust
early in the creation of the solar system and were
formed close to each other. Discovering that the
moon has little iron, this theory became unlikely
as well.

9.2.1 The giant impact hypothesis

In 1975 Dr. William K. Hartmann and Dr. Donald
R. Davis suggested the theory of a giant impact
as the source of the moon [Hartmann and Davis
1975]. In the early solar system there is thought
to have been a great many partially formed plan-
ets known as protoplanets. Collisions among these
protoplanets would have been common and though
these collisions larger planets would build.

The theory is that late in the formation of the Earth
it was impacted by another protoplanet about the
size of Mars. The impact should have been off
center so that the system consisting of the two ob-
jects had a considerable angular momentum. A
large portion of the Earths crust would have been
blasted off and have entered an orbiting disk of re-
mains from the impact. This disk would be iron
poor and from it the Moon would eventually form.

Many computer simulations have later tested the
theory. Both finite difference methods and SPH
methods have been used in the simulations and
they agree that under the right circumstances such
an impact could have taken part in the creation of
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the moon. Some like [Wada and Kokubo ] consider
how complex the equation of state during and after
the impact need for the moon to form as quickly as
it is assumed it has. Others [Canup 2004] consider
the sensitivity of the Moon formation relative to
the impactor size, velocity, direction, proto Earths
rotation etc. The findings of the above two articles
were that a complex EOS was not required and that
the impactor theory required quite specific condi-
tions to create the Earth-Moon system we know.

9.2.2 Simulation

A video showing one of the simulations with too
low impact velocity

youtube.com/watch?v=eZkhbWzepM4

Two planets were created by letting an unordered
collection of particles collapse under their own
gravity with a dampened integrator as suggested
in [Bodenheimer et al. 2007]. One had 1000
particles and a total mass of 5E+24 kg which
is approximately the mass of the current Earth.
The other had 500 particles and a total mass of
6.4E+24 kg which is approximately the mass of
Mars. The equation of state was taken from [Wada
and Kokubo ].

The impact velocity was ranging from 4000 m/s to
16.000 m/s and the impact location varied from 0
degrees, equator, to 80 degrees, near the pole of
proto Earth.

The simulations showed that it was very difficult
to make the impactor both throw out enough ma-
terial and throw it far enough away for it to con-
densate to form a Moon. When material was actu-
ally thrown out, it was not easy to do it with just
enough speed to not fall right back and to not en-
tirely escape proto Earth.

Several simulations with variable settings was per-
formed and images from there are shown below.
Figure 20 shows the very early impact between a
red impactor and a blue proto Earth while Figure
21 shows the same impact shortly after. The his-
tory unfolds on Figure 22 to Figure 25.

Figure 20: Red impactor just touching proto Earth
around t=700s

A slow impact 7000 m/s

Too fast impact 16.000 m/s An example of
an impact which was too fast. This resulted in ma-
terial being blasted away with a velocity higher
than the escape velocity. This does form an object,
but that object has no intentions of orbiting the
proto Earth any time soon. It moves away never to
return leaving just a little material behind on proto
Earth.

A midspeed impact 10.000 m/s This impact
type was the most promising. It did actually pro-
duce an orbiting moon. The moon was too close to
proto Earth though so it was eventually absorbed
back into the heavier object, but it did several full
revolutions before this. An interesting thing about
this simulation was that the initial impact blasted
material into a brief orbit after which the ”moon”
fell back on earth in a secondary impact. This
impact moved material out into orbit again and it
was this material which formed the fully orbiting
moon. This is exactly as the theory [Hartmann and
Davis 1975] describes the moon forming impact
- with the slight exception that the moon in that
model was more long lived.
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Figure 21: Impactor has flattened one side of proto
Earth arround t=1050s

Figure 22: Material has been blown far away
around t=10550s. The material is still just a loose
spray

Figure 23: At t=19040s the blasted material starts
to gather

Figure 24: The material formed ”the moon” too
close to proto earth and on a close pass at t=45300s
the ”moon” is devoured by Earth
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Figure 25: Many rotations later, the centrifugal
force and gravity still battles over the failed moon.
This forms a short spiral of material as it eventu-
ally falls back to proto Earth

Figure 26: Too fast an impact blasts material far
away

Figure 27: A while later the material from the
previous figure is even farther away and moving
above escape velocity

Figure 28: A moon starts to form. A matter bridge
still connects it to proto earth, but it is seen that
both objects have begun collecting the material

Figure 29: The moon is now more clearly defined
and the matter bridge has almost been absorbed

Figure 30: The moon has now completed several
orbits around proto earth, but it is clearly too close
and a short time after it is broken apart and ab-
sorbed
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The conclusion is that, as the research has al-
ready showed, not all giant impacts will produce
a big orbiting moon at a sufficient distance from
Earth to not be broken apart by tidal forces. It is
interesting that we did in fact come this close to
creating a moon, even if it was too big, too close
and too short lived. It should be noted though that
given the mass of the individual particles of ap-
proximately 5E+21 kg, the Moon should consist
of only 14 particles. Distinguishing real moons of
14 particles from random garbage due to noise is
not feasible. Had we used more particles and run
this simulation off line, then the resolution could
have been good enough to accurately point out the
real particle groups representing the Moon.

9.3 Roche limit

The Roche limit is the distance within where
moons orbiting a planet cannot form by clump-
ing together orbiting material and it is the distance
within where an already formed moon will break
up and be spread out to form an orbiting disk of
material. It may equally well be planets orbiting
a star or even stars orbiting a heavier star or black
hole, but to avoid confusion we will call the orbit-
ing object a moon and the central object a planet.

In 1848 the astronomer Edouard Roche originally
calculated this limit. It is derived from the forces
acting on a particle in the moon which are the grav-
itational pull from its neighboring moon particles
Fm, the pull from the planet Fp and the centrifu-
gal force Fc experienced due to the moons rotation
around the planet. A moon with a fast self rota-
tion will also experience centrifugal force due to
its own spin which will counteract Fm Here we will
ignore this factor.

Consider two points on the surface of the moon.
Pnear which is on the side of the moon towards
the planet and Pf ar which is on the opposite of
the moon. Both experience a gravitational pull
towards the planet, towards the moon center and
a centrifugal force away from the planet. If the
forces experienced are not the same and if the

Figure 31: A fluid moon with zero initial motion
has been accelerated towards a planet and due to
the difference in gravity felt on the near and the
far side of the moon, ir has been stretched into a
tear shape.

moon is soft, it will be deformed from its spher-
ical shape. The forces are written as accelerations
below.

ap =
GMplanet

r2
orbit

(65)

am =
GMmoon

r2
moon

(66)

ac =
v2

orbit
r

(67)

The total difference in acceleration for Pnear and
Pf ar will be the acceleration tearing the moon
apart. As the moon begins to deform the elongated
shape, as seen on Figure 31, it will cause the ef-
fect to accelerate till the point where the breakup
is total.

The above assumptions require the moon to be
fluid with nothing keeping it together other than
its own gravity. Rigid moons are held together by
electro chemical bonds which are much stronger
than gravity. This allows rock moons to exist in-
side the Roche limit even though they can not form
there.
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Figure 32: A spherical moon orbits a planet. The
planet is not rendered to scale

9.4 Simulation

A video showing a zero momentum fluid moon ac-
celerated towards a planet and stretched due to dif-
ferential acceleration

youtube.com/watch?v=hKlmz45YPis

Another video shows the entire breakup of a moon

youtube.com/watch?v=WQanorVXjhQ.

A 100 particle spherical moon with the mass and
radius of the Moon was created and positioned
very close to a point sized planet having the mass
of Earth. The moon was given an initial motion
vector to put it into an orbit much too close to the
planet.

Figure 32 shows the initial position and shape of
the moon while Figure 33 shows the visibly de-
formed moon approximately 0.2 orbital period in
the simulation. In Figure 34 the moon has bro-
ken almost entirely apart. The situation worsens in
Figure 35 and after three orbital periods, the moon
is forming a spiral pattern around the planet in Fig-
ure 36. Then finally in Figure 37

Figure 33: Already a fraction of an orbital period
later, the moon has visibly deformed

Figure 34: Here the moon has broken almost en-
tirely apart
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Figure 35: An even more broken up moon

Figure 36: The remains of the moon is spiraling
around the planet

Figure 37: The moon is completely gone and in-
stead the planet has a disk of fragmented orbiting
material

9.4.1 Transference of momentum

A very interesting thing about this moon breaking
up is that the fragmented material had a very high
viscosity. The viscosity would not be high in the
real world, but it was artificially enhanced to give
a larger shear viscosity among particles with dif-
ferent orbital velocities. This means that even over
the very short time simulated here, we are able to
see another physical effect from differentially ro-
tating disks of orbiting material. That is the trans-
ference of momentum from the fast rotating inner
parts to the slower rotating outer parts. This means
that rather than having the different parts of the
material disk rotate with their own optimal veloc-
ity, the inner parts will be slowed down and will
have a decaying orbit eventually making them im-
pact the planet. At the same time the outer parts
will be accelerated into a higher orbit.

The images showing the breakup of the moon are
all kept to same scale to ensure that comparisons
can be made. It is clear when comparing Figure
32, Figure 35 and Figure 37 that some parts of the
material are in much lower orbits while other parts
are in much higher orbits. It can also be seen in
the video mentioned previously of the event, that
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the inner most particles are absorbed by the planet
while outer particles keep gaining distance from
the planet.

10 The simulator

A simulator was implemented using using the lan-
guage C# and the graphics API XNA.

The application is highly parallelized and can run
any user defined number of threads which lets
it easily scale to different systems with different
numbers of processing cores. The test system was
an Intel Quad Core2 Q9550 running at 2.83GHz
and having 3 GB usable memory. The operating
system was windows 7 professional 32 bit.

10.1 What is missing

The evolution of internal energy over time was not
implemented. Neither was individual time-steps,
though adaptive time stepping is included in the
simulator. All other elements described in this text
were implemented.

10.2 Parallel efficiency

The application was tested with from 1 to 100
threads on 1000 particles and the performance
scaled in an almost linear way with the number
of threads up to the point where there were more
threads than cores. From this point, the calcula-
tion speed remained constant. This indicates that
the parallelization was quite efficient though not
all the code was parallelized and it shows that there
are very few waits among the threads. It also indi-
cates that the application can be built to use a large
number of threads and it will not negatively affect
performance to have this number of threads even
though there are fewer cores. This means that a
given build can adapt well to future systems with
more cores than the test system.

The only requirement is that the number of parti-
cles must be a multiple of the number of threads.

Number of threads physics frame-rate
1 7
2 12
3 16
4 20

10 20
100 20

10.3 Spatial partitioning

The number of calculated gravity sources is plot-
ted over 80 time-steps of a simulation of a col-
lapsing particle cloud consisting of 1000 particles.
It is evident that the smaller the value for θ the
more particle-particle gravity is calculated while a
larger number tends to approximate far-away par-
ticle groups as a single source.

A value for θ of 0.0 ensures that no approximation
will be used. Comparing the number of gravity
sources with a value of 0.5 shows Figure 38 that
the workload is approximately ten times smaller.
Having used a larger cloud would have shown an
even greater saving using the approximations.

10.4 Conservation of momentum

Regretfully, the total linear momentum of the sim-
ulation was not conserved as seen in Figure 39.
The green circles show momentum of a system us-
ing a time-step of 100 seconds and the solid red
line show the same using a time-step of 200 sec-
onds. Both grow in a monotonous way through-
out the sampling. Both grow with almost the same
amount indicating that this is not a time-step de-
pendent error.

A system with 1000 particles was run for 200 time-
steps and momentum was logged. The system was
using a Barnes Hutt gravity approximation with
θ = 0.5. Initially there was zero linear and angular
momentum.
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Figure 38: Plot of calculated gravity sources for
different values of θ

Note that momentum, mass times velocity, is here
scaled down to momentum per kg mass in the
simulation. The particles used here each weighed
2E+28 kg so obviously even the slightest error in
velocity would change the momentum enormously
and comparisons with lighter systems would be
impossible.

The bright side to this momentum problem is how-
ever the black stared line at the bottom. It is the re-
sult of running the same simulation with the large
time-step of 200 seconds, but this time without the
gravity approximation. Now momentum is almost
constant. A closeup is seen in Figure 40 where it
is evident that the error is not not growing and it
is also seen that per kg simulation mass it is very
tiny.

The conclusion is that the approximation not only
results in a slightly wrong gravity force, as first as-
sumed and as described in the literature. It also
results in a violation of the law of conservation of
momentum. The explanation can be described us-
ing an example with three particles A,B and C. B
and C may be located close to each other some dis-
tance from A. When A queries the tree for gravity
the B-C group is far enough away for it to be ap-

Figure 39: Total linear momentum per kg mass in
the simulation with and without a Barnes Hutt ap-
proximation

Figure 40: Total linear momentum per kg mass in
the simulation using true gravity
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Figure 41: Total angular momentum per kg mass
in the simulation using true gravity

proximated by their center of mass at a distance
equal to their average distance from A. This re-
sults in one force FBC

A felt by A from BC. When
on the other hand B queries the tree for gravity, C
is close and should not be approximated and A is
far but is isolated and is not approximated (it is not
grouped close to any other particles). Therefore B
received the forces FA

B and FC
B . The same happens

for C which received FA
C and FB

C . The problem is
now that the force felt by A from BC is not the
same as the force they feel from A! In other words
FBC

A 6= FA
B +FA

C since the Barnes Hutt approxima-
tion means that FBC

A ≈ FB
A +FC

A .

This means that there is a lack of symmetry in the
forces between particles and this in turn means that
momentum is not conserved.

Angular momentum is affected in exactly the same
way by the approximation and as soon as true grav-
ity is used, the angular momentum is also con-
served. Not quite as perfectly as linear momen-
tum, but quite well none the less. In Figure 41 is
shown a scaled plot of angular momentum which
is small and not growing.

10.4.1 A possible solution

Only after discovering that the Barnes Hutt method
did not conserve momentum did we look for al-
ternative methods. One which we found is de-
scribed in[Dehnen 2000]. The general idea is to
not only have particle-cell and particle-particle in-
teractions as in Barnes Hutt, but also have cell-
cell interactions for sufficiently compact and dis-
tant cells. Ironic enough this idea was considered
early on in the project as an optimization to reg-
ular Barnes Hutt, even though we had not seen it
described anywhere. It was considered only for its
possible better speed and not for conservation of
momentum though, since we were at that time not
aware that naturally regular Barnes Hutt was not
conservative.

10.5 Simulator evaluation

The simulator handles systems with 2000 particles
at generally 20 physics steps per second. The ren-
dering is constant at 60 FPS. For most purposes,
the 20 physics steps per second is reasonable, but
for some very high velocity collisions the adap-
tive time-step will obviously be very small which
makes the simulation seem slow. Since rendering
is always fast and since the camera can be freely
moved in 3D the simulations are still interesting
even for very small time-steps since it can be ob-
served from various views. Simulations such as
the moon forming impact ran at a speed where it
took around 3 minutes for the moon to form and
do a few revolutions around proto Earth. That is
quite reasonable for demonstration purposes.

11 Future work

The next obvious step would be to parallelize the
simulator even further. The speedup from one core
to four cores was convincing so the upscaling to
many more threads running on either a cluster sys-
tem or on a Graphics Processing Unit would most
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likely let the simulator run at interactive rates with
a much higher particle count. There already ex-
ist particle system simulations running on graphics
processors and they are very impressive, but most
of those simulators are pure N-body simulators or
ordinary particle systems simulating earthly fluids
- not the combination of the two.

It would also be interesting to implement the al-
ternative tree method and validate that it is in fact
faster and even more importantly that it does con-
serve momentum.
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